Featured Research

from universities, journals, and other organizations

All-optical transistor: Controling the flow of light with a novel optical transistor

Date:
November 12, 2010
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Researchers have discovered a method for coupling photons and mechanical vibrations that could have numerous applications in telecommunications and quantum information technologies.

This is a false-color scanning electron micrograph of the microresonator used in the study of OMIT. The red top part is a silica toroid; it is supported by a silicon pillar (gray) on a semiconductor chip. The silica toroid serves both, as an excellent optical resonator for photons, and it supports mechanical vibrations (phonons). The mutual coupling of photons and phonons can be harnessed to control the propagation of light all-optically.
Credit: T. Kippenberg / EPFL

In an article appearing on Nov. 11 in the journal Science, researchers at EPFL and the Max Planck Institute of Quantum Optics announce the discovery of a method for coupling photons and mechanical vibrations that could have numerous applications in telecommunications and quantum information technologies.

Related Articles


Controlling and modulating the flow of light is essential in today's telecommunications-based society. Professor Tobias Kippenberg and his team in EPFL's Laboratory of Photonics and Quantum Measurements have discovered a novel way to couple light and vibrations. Using this discovery, they built a device in which a beam of light traveling through an optical microresonator could be controlled by a second, stronger light beam. The device thus acts like an optical transistor, in which one light beam influences the intensity of another.

Their optical microresonator has two characteristics: first, it traps light in a tiny glass structure, guiding the beam into a circular pattern. Second, the structure vibrates, like a wine glass, at well-defined frequencies. Because the structure is so tiny (a fraction of the diameter of a human hair), these frequencies are 10,000 times higher than a wineglass vibration. When light is injected into the device, the photons exert a force called radiation pressure, which is greatly enhanced by the resonator. The increasing pressure deforms the cavity, coupling the light to the mechanical vibrations. If two light beams are used, the interaction of the two lasers with the mechanical vibrations results in a kind of optical "switch": the strong "control" laser can turn on or off a weaker "probe" laser just as in a electronic transistor.

"We have known for more than two years that this effect was theoretically possible," explains Max-Planck Institute scientist Albert Schliesser, but pinning it down proved difficult. "Once we knew where to look, it was right there," recalls EPFL PhD student Stefan Weis, one of the lead authors of the paper. Senior EPFL scientist Samuel Deléglise notes that "the agreement between theory and experiment is really striking."

Applications of this novel effect, baptised "OMIT" (optomechanically-induced transparency), could provide entirely new functionality to photonics. Radiation-to-vibration conversions are already widely used; in mobile phones, for example, a receiver converts electromagnetic radiation to mechanical vibration, enabling the signal to be filtered efficiently. But it has been impossible to do this kind of conversion with light. With an OMIT-based device, an optical light field could for the first time be converted into a mechanical vibration. This could open up a huge range of possibilities in telecommunications. For example, novel optical buffers could be designed that could store optical information for up to several seconds.

On a more fundamental level, researchers around the world have been trying to find ways to control optomechanical systems at the quantum level: the switchable coupling demonstrated by the EPFL-Max Planck team could help the community clear this hurdle, by serving as an important interface in hybrid quantum systems.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan Weis, Rémi Rivière, Samuel Deléglise, Emanuel Gavartin, Olivier Arcizet, Albert Schliesser, and Tobias J. Kippenberg. Optomechanically Induced Transparency. Science, 11 November 2010 DOI: 10.1126/science.1195596

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "All-optical transistor: Controling the flow of light with a novel optical transistor." ScienceDaily. ScienceDaily, 12 November 2010. <www.sciencedaily.com/releases/2010/11/101111141847.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2010, November 12). All-optical transistor: Controling the flow of light with a novel optical transistor. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/11/101111141847.htm
Ecole Polytechnique Fédérale de Lausanne. "All-optical transistor: Controling the flow of light with a novel optical transistor." ScienceDaily. www.sciencedaily.com/releases/2010/11/101111141847.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins