Featured Research

from universities, journals, and other organizations

Surprise link between weird quantum phenomena: Heisenberg uncertainty principle sets limits on Einstein's 'spooky action at a distance'

Date:
November 19, 2010
Source:
Centre for Quantum Technologies at the National University of Singapore
Summary:
Researchers have uncovered a fundamental link between two defining properties of quantum mechanics. This link constitutes a dramatic breakthrough in our understanding of nature. Non-locality, also described as "spooky action at a distance," is in fact limited by the uncertainty principle.

New research shows that quantum non-locality, what Einstein called "spooky action at a distance," is in fact limited by Heisenberg's uncertainty principle.
Credit: iStockphoto

Researchers have uncovered a fundamental link between the two defining properties of quantum physics. The result is being heralded as a dramatic breakthrough in our basic understanding of quantum mechanics and provides new clues to researchers seeking to understand the foundations of quantum theory. The result addresses the question of why quantum behaviour is as weird as it is -- but no weirder.

Stephanie Wehner of Singapore's Centre for Quantum Technologies and the National University of Singapore and Jonathan Oppenheim of the United Kingdom's University of Cambridge published their work in the latest edition of the journal Science.

The strange behaviour of quantum particles, such as atoms, electrons and the photons that make up light, has perplexed scientists for nearly a century. Albert Einstein was among those who thought the quantum world was so strange that quantum theory must be wrong, but experiments have borne out the theory's predictions.

One of the weird aspects of quantum theory is that it is impossible to know certain things, such as a particle's momentum and position, simultaneously. Knowledge of one of these properties affects the accuracy with which you can learn the other. This is known as the "Heisenberg Uncertainty Principle."

Another weird aspect is the quantum phenomenon of non-locality, which arises from the better-known phenomenon of entanglement. When two quantum particles are entangled, they can perform actions that look as if they are coordinated with each other in ways that defy classical intuition about physically separated particles.

Previously, researchers have treated non-locality and uncertainty as two separate phenomena. Now Wehner and Oppenheim have shown that they are intricately linked. What's more, they show that this link is quantitative and have found an equation which shows that the "amount" of non-locality is determined by the uncertainty principle.

"It's a surprising and perhaps ironic twist," said Oppenheim, a Royal Society University Research Fellow from the Department of Applied Mathematics & Theoretical Physics at the University of Cambridge. Einstein and his co-workers discovered non-locality while searching for a way to undermine the uncertainty principle. "Now the uncertainty principle appears to be biting back."

Non-locality determines how well two distant parties can coordinate their actions without sending each other information. Physicists believe that even in quantum mechanics, information cannot travel faster than light. Nevertheless, it turns out that quantum mechanics allows two parties to coordinate much better than would be possible under the laws of classical physics. In fact, their actions can be coordinated in a way that almost seems as if they had been able to talk. Einstein famously referred to this phenomenon as "spooky action at a distance."

However, quantum non-locality could be even spookier than it actually is. It's possible to have theories which allow distant parties to coordinate their actions much better than nature allows, while still not allowing information to travel faster than light. Nature could be weirder, and yet it isn't -- quantum theory appears to impose an additional limit on the weirdness.

"Quantum theory is pretty weird, but it isn't as weird as it could be. We really have to ask ourselves, why is quantum mechanics this limited? Why doesn't nature allow even stronger non-locality?" Oppenheim says.

The surprising result by Wehner and Oppenheim is that the uncertainty principle provides an answer. Two parties can only coordinate their actions better if they break the uncertainty principle, which imposes a strict bound on how strong non-locality can be.

"It would be great if we could better coordinate our actions over long distances, as it would enable us to solve many information processing tasks very efficiently," Wehner says. "However, physics would be fundamentally different. If we break the uncertainty principle, there is really no telling what our world would look like."

How did the researchers discover a connection that had gone unnoticed so long? Before entering academia, Wehner worked as a 'computer hacker for hire', and now works in quantum information theory, while Oppenheim is a physicist. Wehner thinks that applying techniques from computer science to the laws of theoretical physics was key to spotting the connection. "I think one of the crucial ideas is to link the question to a coding problem," Wehner says. "Traditional ways of viewing non-locality and uncertainty obscured the close connection between the two concepts."

Wehner and Oppenheim recast the phenomena of quantum physics in terms that would be familiar to a computer hacker. They treat non-locality as the result of one party, Alice, creating and encoding information and a second party, Bob, retrieving information from the encoding. How well Alice and Bob can encode and retrieve information is determined by uncertainty relations. In some situations, they found that and a third property known as "steering" enters the picture.

Wehner and Oppenheim compare their discovery to uncovering what determines how easily two players can win a quantum board game: the board has only two squares, on which Alice, can place a counter of two possible colours: green or pink. She is told to place the same colour on both squares, or to place a different colour on each. Bob has to guess the colour that Alice put on square one or two. If his guess is correct, Alice and Bob win the game. Clearly, Alice and Bob could win the game if they could talk to each other: Alice would simply tell Bob what colours are on squares one and two. But Bob and Alice are situated so far apart from each other that light -- and thus an information-carrying signal -- does not have time to pass between them during the game.

If they can't talk, they won't always win, but by measuring on quantum particles, they can win the game more often than any strategy which doesn't rely on quantum theory. However, the uncertainty principle prevents them from doing any better, and even determines how often they lose the game.

The finding bears on the deep question of what principles underlie quantum physics. Many attempts to understand the underpinnings of quantum mechanics have focused on non-locality. Wehner thinks there may be more to gain from examining the details of the uncertainty principle. "However, we have barely scratched the surface of understanding uncertainty relations," she says.

The breakthrough is future-proof, the researchers say. Scientists are still searching for a quantum theory of gravity and Wehner and Oppenheim's result concerning non-locality, uncertainty and steering applies to all possible theories -- including any future replacement for quantum mechanics.


Story Source:

The above story is based on materials provided by Centre for Quantum Technologies at the National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan Oppenheim, Stephanie Wehner. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science, 2010; 330 (6007): 1072-1074 DOI: 10.1126/science.1192065

Cite This Page:

Centre for Quantum Technologies at the National University of Singapore. "Surprise link between weird quantum phenomena: Heisenberg uncertainty principle sets limits on Einstein's 'spooky action at a distance'." ScienceDaily. ScienceDaily, 19 November 2010. <www.sciencedaily.com/releases/2010/11/101118141541.htm>.
Centre for Quantum Technologies at the National University of Singapore. (2010, November 19). Surprise link between weird quantum phenomena: Heisenberg uncertainty principle sets limits on Einstein's 'spooky action at a distance'. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/11/101118141541.htm
Centre for Quantum Technologies at the National University of Singapore. "Surprise link between weird quantum phenomena: Heisenberg uncertainty principle sets limits on Einstein's 'spooky action at a distance'." ScienceDaily. www.sciencedaily.com/releases/2010/11/101118141541.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins