Featured Research

from universities, journals, and other organizations

A new electromagnetism can be simulated through a quantum simulator

Date:
November 27, 2010
Source:
madrimasd
Summary:
A quantum simulator is a variant of a quantum computer that allows us to outperform classical computers in the understanding of complex quantum systems.

(a) Diagram of a periodic superlattice wich, built from the interference of electromagnetic beams, is capable of storing atoms in the minimum of potential. The dynamics of these atoms can be controlled by introducing additional laser beams (red). (b) Scheme of the effective dynamic in the atomic model. The atoms, represented by red spheres, jump between two neighboring sites of the optical lattice suffering a particular rotation of its spin, here represented by a green rectangle. (c,d) Temporal evolution of the probability of finding an atom with a certain spin in a given position in the lattice. Both oscillations show that the effective dynamic is the one shown in (b).
Credit: Image courtesy of QUITEMAD (Quantum Information Technologies in Madrid)

A quantum simulator is a variant of a quantum computer that allows us to outperform classical computers in the understanding of complex quantum systems.

Related Articles


There are two fundamental aspects that make these devices attractive for scientists. On the one hand, quantum simulators will play a leading role in clarifying some important, but yet unsolved, puzzles of theoretical physics.. On the other hand, such deeper understanding of a given phenomenon will certainly give rise to useful technological applications.

One of the best quantum simulators consists of a gas of extremely cold atoms loaded in an artificial crystal made of light: an optical lattice. Experimental physicists have developed efficient techniques to control the quantum properties of this system, to such extent, that it serves as an ideal quantum simulator of different phenomena.

So far, efforts have been focused on condensed-matter systems, where many open and interesting problems remain to be solved.

In a recent work published in Physical Review Letters by a collaboration of international teams (Universidad Complutense de Madrid: A. Bermudez and M.A. Martin-Delgado; ICFO Barcelona: M. Lewenstein; Max-Planck Institute Garching: L. Mazza, M. Rizzi; Universite de Brussels: N. Goldman), this platform has also been shown to be a potential quantum simulator of high-energy physics.

The authors have proposed a clean and controllable setup where a variety of exotic, but still unobserved, phenomena arise. They describe how to build a quantum simulator of Axion Electrodynamics (high-energy physics), and 3D Topological Insulators (condensed matter). In particular, these results pave the way to the fabrication of an Axion, a long sought-after missing particle in the standard model of elementary particles. They show that their atomic setup constitutes an axion medium, where an underlying topological order gives rise to a non-vanishing axion field.

Besides, they show how the value of the axion can attain arbitrary values, and how its dynamics and space-dependence can be experimentally controlled. Accordingly, their optical-lattice simulator offers a unique possibility to observe diverse effects, such as the Wiiten effect, the Wormhole effect, or a fractionally charged capacitor, in atomic-physics laboratories.

This work has an interdisciplinary character, which brings together physicists specializing in lattice gauge theories, atomic molecular and optical physics, and condensed matter physics.


Story Source:

The above story is based on materials provided by madrimasd. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M. Lewenstein, M. Martin-Delgado. Wilson Fermions and Axion Electrodynamics in Optical Lattices. Physical Review Letters, 2010; 105 (19): 190404 DOI: 10.1103/PhysRevLett.105.190404

Cite This Page:

madrimasd. "A new electromagnetism can be simulated through a quantum simulator." ScienceDaily. ScienceDaily, 27 November 2010. <www.sciencedaily.com/releases/2010/11/101124085725.htm>.
madrimasd. (2010, November 27). A new electromagnetism can be simulated through a quantum simulator. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/11/101124085725.htm
madrimasd. "A new electromagnetism can be simulated through a quantum simulator." ScienceDaily. www.sciencedaily.com/releases/2010/11/101124085725.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins