Featured Research

from universities, journals, and other organizations

Breakthrough chip technology lights path to exascale computing: Optical signals connect chips together faster and with lower power

Date:
December 3, 2010
Source:
IBM
Summary:
IBM scientists have unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon, enabling computer chips to communicate using pulses of light (instead of electrical signals), resulting in smaller, faster and more power-efficient chips than is possible with conventional technologies.

IBM scientists (left to right) Yurii Vlasov, William Green and Solomon Assefa unveiled a new CMOS Integrated Silicon Nanophotonics chip technology that integrates electrical and optical devices on the same piece of silicon, enabling computer chips to communicate using pulses of light (instead of electrical signals).
Credit: Image courtesy of IBM

IBM scientists have unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon, enabling computer chips to communicate using pulses of light (instead of electrical signals), resulting in smaller, faster and more power-efficient chips than is possible with conventional technologies.

The new technology, called CMOS Integrated Silicon Nanophotonics, is the result of a decade of development at IBM's global research laboratories. The patented technology will change and improve the way computer chips communicate -- by integrating optical devices and functions directly onto a silicon chip, enabling over 10X improvement in integration density than is feasible with current manufacturing techniques.

IBM anticipates that Silicon Nanophotonics will dramatically increase the speed and performance between chips, and further the company's ambitious exascale computing program, which is aimed at developing a supercomputer that can perform one million trillion calculations -- or an exaflop -- in a single second. An exascale supercomputer will be approximately one thousand times faster than the fastest machine today.

"The development of the Silicon Nanophotonics technology brings the vision of on-chip optical interconnections much closer to reality," said Dr. T.C. Chen, vice president, Science and Technology, IBM Research. "With optical communications embedded into the processor chips, the prospect of building power-efficient computer systems with performance at the exaflop level is one step closer to reality."

In addition to combining electrical and optical devices on a single chip, the new IBM technology can be produced on the front-end of a standard CMOS manufacturing line and requires no new or special tooling. With this approach, silicon transistors can share the same silicon layer with silicon nanophotonics devices. To make this approach possible, IBM researchers have developed a suite of integrated ultra-compact active and passive silicon nanophotonics devices that are all scaled down to the diffraction limit -- the smallest size that dielectric optics can afford.

"Our CMOS Integrated Nanophotonics breakthrough promises unprecedented increases in silicon chip function and performance via ubiquitous low-power optical communications between racks, modules, chips or even within a single chip itself," said Dr. Yurii A. Vlasov, Manager of the Silicon Nanophotonics Department at IBM Research. "The next step in this advancement is to establishing manufacturability of this process in a commercial foundry using IBM deeply scaled CMOS processes."

By adding just a few more processing modules to a standard CMOS fabrication flow, the technology enables a variety of silicon nanophotonics components, such as: modulators, germanium photodetectors and ultra-compact wavelength-division multiplexers to be integrated with high-performance analog and digital CMOS circuitry. As a result, single-chip optical communications transceivers can now be manufactured in a standard CMOS foundry, rather than assembled from multiple parts made with expensive compound semiconductor technology.

The density of optical and electrical integration demonstrated by IBM's new technology is unprecedented -- a single transceiver channel with all accompanying optical and electrical circuitry occupies only 0.5mm2 -- 10 times smaller than previously announced by others. The technology is amenable for building single-chip transceivers with area as small as 4x4mm2 that can receive and transmit over Terabits per second that is over a trillion bits per second.

The development of CMOS Integrated Silicon Nanophotonics is the culmination of a series of related advancements by IBM Research that resulted in the development of deeply scaled front-end integrated Nanophotonics components for optical communications. These milestones include:

  • March 2010, IBM announced a Germanium Avalanche Photodetector working at unprecedented 40Gb/s with CMOS compatible voltages as low as 1.5V. This was the last piece of the puzzle that completes the prior development of the "nanophotonics toolbox" of devices necessary to build the on-chip interconnects.
  • March 2008, IBM scientists announced the world's tiniest nanophotonic switch for "directing traffic" in on-chip optical communications, ensuring that optical messages can be efficiently routed.
  • December 2007, IBM scientists announced the development of an ultra-compact silicon electro-optic modulator, which converts electrical signals into the light pulses, a prerequisite for enabling on-chip optical communications.
  • December 2006, IBM scientists demonstrated silicon nanophotonic delay line that was used to buffer over a byte of information encoded in optical pulses -- a requirement for building optical buffers for on-chip optical communications.

The details and results of this research effort was reported in a presentation delivered by Dr. Yurii Vlasov at the major international semiconductor industry conference SEMICON held in Tokyo on Dec. 1, 2010. The talk is entitled "CMOS Integrated Silicon Nanophotonics: Enabling Technology for Exascale Computational Systems," co-authored by William Green, Solomon Assefa, Alexander Rylyakov, Clint Schow, Folkert Horst, and Yurii Vlasov of IBM's T.J. Watson Research Center in Yorktown Heights, N.Y. and IBM Zurich Research Lab in Rueschlikon, Switzerland.

Additional information on the project can be found at http://www.research.ibm.com/photonics.


Story Source:

The above story is based on materials provided by IBM. Note: Materials may be edited for content and length.


Cite This Page:

IBM. "Breakthrough chip technology lights path to exascale computing: Optical signals connect chips together faster and with lower power." ScienceDaily. ScienceDaily, 3 December 2010. <www.sciencedaily.com/releases/2010/12/101201212401.htm>.
IBM. (2010, December 3). Breakthrough chip technology lights path to exascale computing: Optical signals connect chips together faster and with lower power. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/12/101201212401.htm
IBM. "Breakthrough chip technology lights path to exascale computing: Optical signals connect chips together faster and with lower power." ScienceDaily. www.sciencedaily.com/releases/2010/12/101201212401.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins