Featured Research

from universities, journals, and other organizations

Nanoscale gene 'ignition switch' may help spot and treat cancer

Date:
December 15, 2010
Source:
Johns Hopkins Medical Institutions
Summary:
In a proof of principal study in mice, scientists have shown that a set of genetic instructions encased in a nanoparticle can be used as an "ignition switch" to rev up gene activity that aids cancer detection and treatment.

In a proof of principal study in mice, scientists at Johns Hopkins and the Virginia Commonwealth University (VCU) have shown that a set of genetic instructions encased in a nanoparticle can be used as an "ignition switch" to rev up gene activity that aids cancer detection and treatment.

Related Articles


The switch, called a promoter, is a set of chemical letters that interacts with DNA to turn on gene activity. In this case, the scientists used a promoter called PEG-Prom, cloned by VCU researcher Paul Fisher, Ph.D. PEG-Prom is activated only when inside cancer cells, not in normal ones.

"With current imaging devices like CT and PET, we can tell if something is wrong in a patient, but we don't have definitive tools to distinguish cancer from inflammation or infection," says Martin Pomper, M.D., Ph.D., professor of radiology at Johns Hopkins. "It generally takes at least one month after giving patients certain cancer treatments before existing imaging tools can measure the patient's response to the therapy."

To differentiate cancer cells from normal cells, Johns Hopkins scientists connected PEG-Prom to either a gene that produces firefly luciferase, the substance that make fireflies glow, or a gene called HSV1tk, which initiates a chemical reaction with radioactive labels inside the cell that can be detected by imaging devices. Once inside a cancer cell, the PEG-Prom switch is turned on, and it activates either the luciferase or HSV1tk gene.

Then, they stuffed the PEG-Prom/gene combination into tiny spheres -- about 50,000 times smaller than the head of a pin -- and intravenously injected the nanoparticles into mice with either metastatic breast cancer or melanoma.

The findings, reported in the Dec. 12 online edition of Nature Medicine, reveal a 30-fold difference in identifying cancer cells containing luciferase and normal cells that did not contain the substance. Similar results were observed in cancer cells filled with the radioactive labels and normal ones that were not.

"This type of imaging technique has the potential to add to existing tools with more specificity in identifying the problem," says Pomper.

Pomper says that the technique could likely be used in any cancer, and the nanoparticle and HSV1tk gene used in the current study have been tested previously in clinical studies unrelated to Pomper's work.

In addition to diagnostic and monitoring tools, the technique could be designed to deliver therapies to the heart of cancer cells. One approach, he says is to use radioactive isotopes to make cancer cells radioactive from the inside, instead of delivering radiation to the patient externally.

Still, Pomper says, such a technique would be limited to identifying tumors that are two millimeters or larger, amounting to millions of cells, because current imaging devices cannot detect anything smaller. He also says that certain doses of nanoparticles could be toxic, so his team is conducting tests to find the best nanoparticle.

Funding for the research was provided by the National Institutes of Health, the Society of Nuclear Medicine, the Korea Science and Engineering Foundation Fellowship Program, and the U.S. National Foundation for Cancer Research. Fisher is the Thelma Newmeyer Corman Endowed Chair in Cancer Research at the VCU Massey Cancer Center, professor and chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

Additional scientists involved in the research were Hyo-eun C. Bhang, Kathleen L. Gabrielson and John Laterra from Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hyo-eun C Bhang, Kathleen L Gabrielson, John Laterra, Paul B Fisher, Martin G Pomper. Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nature Medicine, 2010; DOI: 10.1038/nm.2269

Cite This Page:

Johns Hopkins Medical Institutions. "Nanoscale gene 'ignition switch' may help spot and treat cancer." ScienceDaily. ScienceDaily, 15 December 2010. <www.sciencedaily.com/releases/2010/12/101215113249.htm>.
Johns Hopkins Medical Institutions. (2010, December 15). Nanoscale gene 'ignition switch' may help spot and treat cancer. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/12/101215113249.htm
Johns Hopkins Medical Institutions. "Nanoscale gene 'ignition switch' may help spot and treat cancer." ScienceDaily. www.sciencedaily.com/releases/2010/12/101215113249.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins