Featured Research

from universities, journals, and other organizations

Triblock spheres provide a simple path to complex structures

Date:
January 19, 2011
Source:
University of Illinois at Urbana-Champaign
Summary:
Materials scientists have developed a simple, generalizable technique to fabricate complex structures that assemble themselves. The researchers demonstrated that they can produce a large, complex structure -- an intricate lattice -- from tiny colloidal particles called triblock Janus spheres. Further exploration of triblock spheres and other Janus particles could open doors to a broad area of self-assembly of complex structures from simple materials.

Illinois researchers, from left, doctoral student Qian Chen, research scientist Sung Chul Bae and Steve Granick, professor of materials science and engineering and of physics, developed tiny, simple spheres that self-assemble into intricate structures, such as a lattice that could function as a filter.
Credit: L. Brian Stauffer

University of Illinois materials scientists have developed a simple, generalizable technique to fabricate complex structures that assemble themselves.

Related Articles


Their advance, published in the Jan. 20 issue of Nature, utilizes a new class of self-assembling materials that they developed. The team demonstrated that they can produce a large, complex structure -- an intricate lattice -- from tiny colloidal particles called triblock Janus spheres.

"This is a big step forward in showing how to make non-trivial, non-obvious structures from a very simple thing," said Steve Granick, Founder Professor of Engineering at the University of Illinois and a professor of materials science and engineering, chemistry, and physics. "People know a lot about how to do it with molecules -- soaps for example -- but scientists and engineers know very little about how to make it happen with particles. Particles are very different from molecules: They're big, they're nonflexible, and they have lots of critically different materials properties."

Much of the work to date in making complicated structures from colloidal particles has been done through computer simulation. Researchers model complicated designs built of highly complicated particles.

However, creating complicated building blocks for experimental use is difficult. By contrast, the triblock Janus spheres' elegant simplicity makes them ideal for real-world manufacture.

"It was conceptually challenging to fabricate a complex porous material from a simple design, especially in the field of colloidal particles," said graduate student Qian Chen, a co-author of the paper. "Here, we achieve that with really easy designs that we can use in experiments."

Granick's group is well-known for its work with Janus particles. Named for the dual-natured Roman god, Janus particles have two sides or segments of different surface chemistry. Having explored spheres with two different-natured halves, Chen had the idea to make spheres with three "stripes" of reactivity, dubbed triblock Janus spheres. The center band is charged, while the poles are hydrophobic, or water-adverse.

"After many experiments with Janus particles, I wanted to see if adding one more segment would introduce more surprises," Chen said. "Usually in colloid science people use particles that have a uniform surface chemistry. But for this particle, it's like a block polymer. It has three segments of chemistry."

In a salt-water solution, the hydrophobic poles are drawn together, while the charged equators repel one another. As a result, the spheres form a complex lattice where only the poles are in contact with one another. The hydrophobic polar caps are large enough to come into contact with two other spheres. This causes the spheres to arrange into a formation like a six-pointed star, creating a sheet of delicate lace.

Such porous sheets of schizoid particles, hydrophobic and hydrophilic at the same time, could have applications as specialized filters.

"It's like a better soap," Granick said. "Just as soap is very good at dissolving both fats and water-soluble things, our new lacy lattice can also filter out both water-soluble and oil-soluble matter. We have this wonderful self-produced lacy structure that's oil-loving and water-loving at different parts in a periodic array."

The team could apply their simple particle design to fabricate other planar laces. Adjusting the size of the spheres or the proportion of the bands could lead to other lattice patterns or tuned pore sizes. In addition, further exploration of triblock spheres and other Janus particles could open doors to a broad area of self-assembly of complex structures from simple materials.

"Someday maybe we could have a soup of different components, remove some of it, and there would be a microelectronic chip," Granick said. "It's a brand new area. The materials are so different that the structures that they form will be different."


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qian Chen, Sung Chul Bae, Steve Granick. Directed self-assembly of a colloidal kagome lattice. Nature, 2011; 469 (7330): 381 DOI: 10.1038/nature09713

Cite This Page:

University of Illinois at Urbana-Champaign. "Triblock spheres provide a simple path to complex structures." ScienceDaily. ScienceDaily, 19 January 2011. <www.sciencedaily.com/releases/2011/01/110119141733.htm>.
University of Illinois at Urbana-Champaign. (2011, January 19). Triblock spheres provide a simple path to complex structures. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2011/01/110119141733.htm
University of Illinois at Urbana-Champaign. "Triblock spheres provide a simple path to complex structures." ScienceDaily. www.sciencedaily.com/releases/2011/01/110119141733.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins