Featured Research

from universities, journals, and other organizations

Roundworm unlocks pancreatic cancer pathway

Date:
January 19, 2011
Source:
University of North Carolina School of Medicine
Summary:
Scientists took a step back to a simpler organism -- a common roundworm -- and made a discovery about how the Ras oncogene chooses a signaling pathway and how the consequences of that choice play out in cellular development -- a key issue in cancer, which is characterized by uncontrolled cell growth.

The National Cancer Institute estimates that more than 43,000 Americans were diagnosed with pancreatic cancer last year and more than 36,000 died from the disease. Despite advances in genetic science showing that the Ras oncogene is mutated in virtually all pancreatic cancers, scientists have been frustrated by the complexity of the signaling pathways in humans, which make it difficult to pinpoint potential therapeutic targets.

In a study published January 19 in the journal Developmental Cell, a team of researchers led by Channing Der, PhD, Distinguished Professor of Pharmacology at UNC-Chapel Hill, took a step back to a simpler organism -- a common roundworm -- and made a discovery about how the Ras oncogene chooses a signaling pathway and how the consequences of that choice play out in cellular development -- a key issue in cancer, which is characterized by uncontrolled cell growth.

Der, who is also a member of UNC Lineberger Comprehensive Cancer Center, explains, "In humans the cell signaling pathways are very complex; there are more than 20 different downstream partners beyond the two proteins we study -- Raf and RalGEF -- that Ras can choose to interact with. In C. elegans, there is only one of each protein. That made it easier for us to identify how Ras chooses a partner to 'dance' with and what are the critical events in the subsequent cell development that promote cancer."

"We found an elegant mechanism by which Ras switches partners and showed that the choice leads to very different fates for the cell. Now we can go back to the human pancreatic cancer cell and ask whether similar mechanisms are at work in determining how Ras causes pancreatic cancer," he adds.

Scientists often study simpler organisms to tease out genetic and cellular activity that might be almost impossible to map in humans. "Worms' cells actually share a great deal of functional overlap with human cells. However, while there may be one mechanism in a simple organism like a worm, there are multiple mechanisms at work in humans. It's a great thing for us as people, because there is a great deal of redundancy in our biological systems that helps them self-repair and function better, but it makes it a lot harder to study what's going on at a basic level," Der notes.

"If this signaling works in a similar way in humans, the C. elegans model may be very powerful for helping us find new therapeutic targets for pancreatic cancer," he concludes.

In addition to Der, the team included graduate student Tanya Zand, and Assistant Professor David Reiner, PhD, both of UNC's Department of Pharmacology.

The project was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tanya P. Zand, David J. Reiner, Channing J. Der. Ras Effector Switching Promotes Divergent Cell Fates in C. elegans Vulval Patterning. Developmental Cell, 2011; 20 (1): 84 DOI: 10.1016/j.devcel.2010.12.004

Cite This Page:

University of North Carolina School of Medicine. "Roundworm unlocks pancreatic cancer pathway." ScienceDaily. ScienceDaily, 19 January 2011. <www.sciencedaily.com/releases/2011/01/110119151818.htm>.
University of North Carolina School of Medicine. (2011, January 19). Roundworm unlocks pancreatic cancer pathway. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/01/110119151818.htm
University of North Carolina School of Medicine. "Roundworm unlocks pancreatic cancer pathway." ScienceDaily. www.sciencedaily.com/releases/2011/01/110119151818.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins