Featured Research

from universities, journals, and other organizations

Cell pathway key to insulin resistance in Type 2 diabetes illuminated

Date:
February 25, 2011
Source:
La Jolla Institute for Allergy and Immunology
Summary:
Scientists have shed new light on the problem of insulin resistance, and identified the key participants in a molecular pathway that holds therapeutic promise for reducing the severity of Type 2 diabetes.

A research team, led by La Jolla Institute scientist Joel Linden, Ph.D., has shed new light on the problem of insulin resistance, and identified the key participants in a molecular pathway that holds therapeutic promise for reducing the severity of type 2 diabetes.

Related Articles


The researchers looked at the role of adenosine, an immune system signaling molecule, in triggering inflammation, which significantly contributes to insulin resistance. Insulin resistance keeps the body from properly handling sugar and is one of the key factors underlying type 2 diabetes. Diabetes now affects nearly 26 million Americans and is the seventh leading cause of death in the U.S., according to the Centers for Disease Control.

"Several previous studies have shown that if you block adenosine signaling, insulin resistance is diminished," said Dr. Linden. "However, it wasn't known exactly how the process worked or which cells were directly involved."

Dr. Linden's team identified the primary cellular players in the adenosine-fueled inflammation cascade that contributes to insulin resistance. Their study, in animal models, also tested the effectiveness of a recently synthesized adenosine receptor blocker. "We found that if you use this molecule to selectively block one of the adenosine receptors, insulin resistance is decreased and diabetes gets better," said Dr. Linden, one of the world's leading authorities on adenosine.

The findings were published in a paper entitled "Links Between Insulin Resistance, Adenosine A2B Receptors, and Inflammatory Markers in Mice and Humans" in the February issue of the scientific journal Diabetes. Dr. Linden was senior author on the study, which involved scientists from Pennsylvania State University, the University of Virginia, the La Jolla Institute for Allergy & Immunology and Clinical Data, Inc., a pharmaceutical company examining possible therapeutic applications targeting adenosine receptors. Robert A. Figler, Ph.D., of Clinical Data Inc. was first author on the paper.

"Our study clarifies the molecular steps triggered by adenosine, which leads to inflammation linked not only to type 2 diabetes but to other inflammatory diseases," Dr. Figler said. Clinical Data has an ongoing development program in A2B receptor antagonists, he added, and is pursuing the therapeutic potential of these agents in diabetes as well as asthma. Clinical Data plans to soon begin a clinical trial for patients with asthma.

In type 2 diabetes, Dr. Linden explained, the ability of insulin to stimulate glucose uptake by the tissues is reduced, an occurrence known as insulin resistance. "Insulin's job is to move glucose out of the blood stream and into other body tissues, where it can be used," he said. "If insulin can't do its job because the body's tissues aren't responding to it sufficiently, then you end up with a buildup of sugar in the blood."

"So we asked ourselves the question," Dr. Linden continued, 'why don't the tissues respond?'"

Recently, said Dr. Linden, the scientific community has learned that type 2 diabetes is associated with chronic low-grade inflammation. "We believe, as do many scientists, that insulin resistance involves macrophages, which are cells of the body that contribute to inflammation," he explained. "We discovered that adenosine stimulates macrophages. The macrophages then release chemicals called cytokines, which are molecules that rev up the immune system. We believe it is the cytokines that cause tissues to become less sensitive to insulin."

By using an adenosine receptor blocker, the team prevented the adenosine from activating the macrophages, said Dr. Linden. "So the downstream effect of releasing cytokines does not occur." The result? The tissues began to better respond to insulin, which reduces blood sugar levels in diabetic animals.

While sensitivity to insulin was significantly improved, Dr. Linden said insulin resistance was not completely reversed. "We will be studying this further to better understand the details of insulin resistance," he said.


Story Source:

The above story is based on materials provided by La Jolla Institute for Allergy and Immunology. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. Figler, G. Wang, S. Srinivasan, D. Y. Jung, Z. Zhang, J. S. Pankow, K. Ravid, B. Fredholm, C. C. Hedrick, S. S. Rich, J. K. Kim, K. F. LaNoue, J. Linden. Links Between Insulin Resistance, Adenosine A2B Receptors, and Inflammatory Markers in Mice and Humans. Diabetes, 2011; 60 (2): 669 DOI: 10.2337/db10-1070

Cite This Page:

La Jolla Institute for Allergy and Immunology. "Cell pathway key to insulin resistance in Type 2 diabetes illuminated." ScienceDaily. ScienceDaily, 25 February 2011. <www.sciencedaily.com/releases/2011/02/110224091617.htm>.
La Jolla Institute for Allergy and Immunology. (2011, February 25). Cell pathway key to insulin resistance in Type 2 diabetes illuminated. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/02/110224091617.htm
La Jolla Institute for Allergy and Immunology. "Cell pathway key to insulin resistance in Type 2 diabetes illuminated." ScienceDaily. www.sciencedaily.com/releases/2011/02/110224091617.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins