Featured Research

from universities, journals, and other organizations

Tweeting teenage songbirds reveal impact of social cues on learning

Date:
February 26, 2011
Source:
University of California - San Francisco
Summary:
In a finding that once again displays the power of the female, neuroscientists have discovered that teenage male songbirds, still working to perfect their song, improve their performance in the presence of a female bird.

Zebra finches.
Credit: Photo by Satoshi Kojima

In a finding that once again displays the power of the female, UCSF neuroscientists have discovered that teenage male songbirds, still working to perfect their song, improve their performance in the presence of a female bird.

Related Articles


The finding sheds light on how social cues can impact the process of learning, the researchers said, and, specifically, could offer insights into the way humans learn speech and other motor skills. It also could inform strategies for rehabilitating people with motor disorders or brain injuries.

The study was reported in a recent early online edition of Proceedings of the National Academy of Sciences.

Like humans, songbirds learn to sing by first listening to adult birds and then mimicking those sounds through a process of trial-and-error. Their initial vocalizations are akin to the babbling of babies.

Until now, scientists and bird watchers alike have thought that young birds could only produce immature song. However, in a process that involved recording and studying male zebra finch song, the scientists discovered that, in the presence of a female, the birds sang much better than when they were practicing their song alone.

"We were very surprised by the finding," said senior author Allison Doupe, MD, PhD, a professor of psychiatry and physiology and a member of the Keck Center for Integrative Neuroscience at UCSF. "The birds picked the best version of the song that they could possibly perform and they sang it over and over again. They sounded almost like adults. It turns out that teenagers know more than they're telling us."

Normally, the young birds' song is quite poor because they are practicing their vocalization through the trial-and-error process, said the first author of the study, Satoshi Kojima, PhD, a postdoctoral fellow in the Doupe lab. "Something must be happening in response to a reinforcing social cue that allows them to pick out and produce their best possible performance. This demonstrates the power of social cues to shape brain behavior."

The finding could lead to a better understanding of the brain mechanisms supporting language acquisition as well as many other learned behaviors, said Doupe.

"We know that variation by trial and error is an important part of the learning process," said Doupe. "But discovering precisely how social cues influence motor production during song learning in birds could shed light on the brain mechanisms that underlie similar processes in humans learning how to speak, and potentially allow scientists and clinicians to harness these mechanisms when learning is not progressing properly."

Social cues are well known to powerfully influence the processing and production of human speech. A 2003 study by Michael Goldstein and colleagues showed that, in the presence of their mothers, babies' babbling improves. The current study underscores the usefulness of songbirds as a model for understanding the brain mechanisms underlying social modulation of language learning and other motor skills.

Like other songbirds, when they are fully adult, zebra finches sing two types of tunes: undirected, which they sing when alone, and directed, which is slightly more precise, and is favored by females. Adolescent male songbirds, which are just becoming sexually mature, usually sing undirected song, which at that stage is highly variable and immature and sounds like vocal practice.

In their study, the UCSF scientists coaxed the adolescent males to sing directed, courtship song towards females, and analyzed these songs using quantitative computer software. In the undirected context, the birds' song was variable, with low similarity to their final recorded adult song. In the directed context, the song was similar in syllable structure and sequence to that of the adult song.

The finding points to the importance of trial and error in motor learning as a means of perfecting vocalizations, said Doupe. "In the process of learning song, birds must develop their motor neurons to effectively mimic what they've heard. The variability that characterizes the imperfect youthful song of teenage birds is generated by basal ganglia circuits, and it's what allows birds to experiment to find what works best.

"Our finding suggests that, though teenage birds have the ability to produce more complex songs, they are only able to do so on a social cue. "It's possible that the social cue somehow turns off the variability that is responsible for improving vocal learning," she said.

The research was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Kojima, A. J. Doupe. Social performance reveals unexpected vocal competency in young songbirds. Proceedings of the National Academy of Sciences, 2011; 108 (4): 1687 DOI: 10.1073/pnas.1010502108

Cite This Page:

University of California - San Francisco. "Tweeting teenage songbirds reveal impact of social cues on learning." ScienceDaily. ScienceDaily, 26 February 2011. <www.sciencedaily.com/releases/2011/02/110225214720.htm>.
University of California - San Francisco. (2011, February 26). Tweeting teenage songbirds reveal impact of social cues on learning. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2011/02/110225214720.htm
University of California - San Francisco. "Tweeting teenage songbirds reveal impact of social cues on learning." ScienceDaily. www.sciencedaily.com/releases/2011/02/110225214720.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins