Featured Research

from universities, journals, and other organizations

World's most powerful optical microscope: Microscope could 'solve the cause of viruses'

Date:
March 2, 2011
Source:
University of Manchester
Summary:
Scientists have produced the world's most powerful optical microscope, which could help us understand the causes of many viruses and diseases.

Scientists have created a microscope which shatters the record for the smallest object the eye can see, beating the diffraction limit of light.
Credit: Image courtesy of University of Manchester

Scientists have produced the world's most powerful optical microscope, which could help us to understand the causes of many diseases. Writing in the journal Nature Communications, the team have created a microscope which shatters the record for the smallest object the eye can see, beating the diffraction limit of light.

Previously, the standard optical microscope could only see items around one micrometer -- 0.001 millimeters -- clearly.

But now, by combining an optical microscope with a transparent microsphere, dubbed the 'microsphere nanoscope', the Manchester researchers can see 20 times smaller -- 50 nanometers ((5 x 10-8m) -- under normal light. This is beyond the theoretical limit of optical microscopy.

This greatly-increased capacity means the scientists, led by Professor Lin Li and Dr Zengbo Wang, could potentially examine the inside of human cells, and examine live viruses in great detail for the first time.

The scientists, from the School of Mechanical, Aerospace and Civil Engineering, now believe they can use the microscope to detect far smaller images in the future. The new method has no theoretical limit in the size of a feature that can be seen.

The new nano-imaging system is based on capturing optical, near-field virtual images, which are free from optical diffraction, and amplifying them using a microsphere, a tiny spherical particle which is further relayed and amplified by a standard optical microscope.

Professor Li, who initiated and led the research in collaboration with academics at the National University and Data Storage Institute of Singapore, believes their research could prove to be an important development.

He said: "This is a world record in terms of how small an optical microscope can go by direct imaging under a light source covering the whole range of optical spectrum.

"Not only have we been able to see items of 50 nanometers, we believe that is just the start and we will be able to see far smaller items.

"Theoretically, there is no limit on how small an object we will be able to see.

"The common way of seeing tiny items presently is with an electron microscope, and even then you cannot see inside a cell -- only the outside. Optical fluoresce microscopes can see inside the cells indirectly by dying them, but these dyes cannot penetrate viruses.

"Seeing inside a cell directly without dying and seeing living viruses directly could revolutionize the way cells are studied and allow us to examine closely viruses and biomedicine for the first time."

Among other tiny objects the scientists will be able to examine are anodized aluminum oxide nano-structures, and nano-patterns on Blue-Ray CVC disks, not previously visible with an optical microscope.


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zengbo Wang, Wei Guo, Lin Li, Boris Luk'yanchuk, Ashfaq Khan, Zhu Liu, Zaichun Chen, Minghui Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 01 Mar, 2 218 DOI: 10.1038/ncomms1211

Cite This Page:

University of Manchester. "World's most powerful optical microscope: Microscope could 'solve the cause of viruses'." ScienceDaily. ScienceDaily, 2 March 2011. <www.sciencedaily.com/releases/2011/03/110301121952.htm>.
University of Manchester. (2011, March 2). World's most powerful optical microscope: Microscope could 'solve the cause of viruses'. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/03/110301121952.htm
University of Manchester. "World's most powerful optical microscope: Microscope could 'solve the cause of viruses'." ScienceDaily. www.sciencedaily.com/releases/2011/03/110301121952.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins