Featured Research

from universities, journals, and other organizations

Protein's elusive role in embryo and disease development unravelled

Date:
March 2, 2011
Source:
Thomas Jefferson University
Summary:
Scientists have determined that a single protein called FADD controls multiple cell death pathways, a discovery that could lead to better, more targeted autoimmune disease and cancer drugs.

Reporting in Nature, scientists from Thomas Jefferson University have determined that a single protein called FADD controls multiple cell death pathways, a discovery that could lead to better, more targeted autoimmune disease and cancer drugs.

Related Articles


Twelve years ago, internationally-known immunologist Jianke Zhang, Ph.D., an associate professor in the Department of Microbiology and Immunology at Thomas Jefferson University, realized FADD, which stands for Fas-Associated protein with Death Domain, played an important role in embryonic development and the onset of some diseases, but he didn't know exactly why until now.

In the paper published online March 2, Dr. Zhang and researchers show this protein regulates not one but two types of cell deaths pivotal for embryo and disease development. It is now known that FADD causes apoptosis, the "healthy" cell death, while keeping necrosis, the "toxic" one, at bay.

Understanding this pathway is instrumental in developing drugs with selectivity and fewer side effects, said Dr. Zhang, a member of the Kimmel Cancer Center at Jefferson,

"This work has direct impact on our understanding of diseases: cancer, autoimmune disease, immune-deficiency disease," he said. "This is the one gene that regulates these two processes in cells, so now we can find targeted drugs to control the cell death process."

The research suggests that with the absence or variation in expression of this one protein, an embryo may not develop properly or a person may develop disease later in life.

FADD's importance in embryogenesis and lymphocyte death response has been known, but the mechanism that underlies these functions in FADD has remained elusive.

Researchers found that mice that did not express FADD contained raised levels of RIP1, Receptor-Interacting Protein 1, an important protein that mediates necrosis and the apoptotic processes, and their embryonic development failed due to massive necrosis.

"When the FADD-mediated death process is deregulated, we will produce white bloods cells that will attack our own tissue, which is the cause of auto-immune diseases, such as arthritis and lupus," said Dr. Zhang. "And without the necessary cell deaths that are required for tumor surveillance, humans could develop cancer."

There are drugs currently under development today that activate TNF-a-related apoptosis-inducing ligand (TRAIL) death receptor signaling, which induces apoptosis through FADD in cancer cells specifically, but its mechanisms are not well understood and the treatment not perfected. There are also tumor cells that are resistant to TRAIL-induced apoptosis for unknown causes.

"The killing of these tumor cells is not efficient, and this paper actually figured out why," said Dr. Zhang. "We now know that the FADD protein, while required for apoptotic death, is inhibiting necrotic death in tumor cells."


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haibing Zhang, Xiaohui Zhou, Thomas McQuade, Jinghe Li, Francis Ka-Ming Chan, Jianke Zhang. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature, 2 March 2011 DOI: 10.1038/nature09878

Cite This Page:

Thomas Jefferson University. "Protein's elusive role in embryo and disease development unravelled." ScienceDaily. ScienceDaily, 2 March 2011. <www.sciencedaily.com/releases/2011/03/110302142925.htm>.
Thomas Jefferson University. (2011, March 2). Protein's elusive role in embryo and disease development unravelled. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2011/03/110302142925.htm
Thomas Jefferson University. "Protein's elusive role in embryo and disease development unravelled." ScienceDaily. www.sciencedaily.com/releases/2011/03/110302142925.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins