Featured Research

from universities, journals, and other organizations

Tiny gems take big step toward battling cancer

Date:
March 21, 2011
Source:
Northwestern University
Summary:
Researchers have now demonstrated the significance and translational potential of nanodiamonds in the treatment of chemotherapy-resistant cancers. In studies of liver and breast cancer models in vivo, the team found that a normally lethal amount of a chemotherapy drug when bound to nanodiamonds significantly reduced the size of tumors in mice. Survival rates also increased and no toxic effects on tissues and organs were observed.

Chemotherapy drug resistance contributes to treatment failure in more than 90 percent of metastatic cancers. Overcoming this hurdle would significantly improve cancer survival rates.

Related Articles


Dean Ho, an associate professor of biomedical engineering and mechanical engineering at Northwestern University, believes a tiny carbon particle called a nanodiamond may offer an effective drug delivery solution for hard-to-treat cancers.

In studies of liver and breast cancer models in vivo, Ho and a multidisciplinary team of scientists, engineers and clinicians found that a normally lethal amount of a chemotherapy drug when bound to nanodiamonds significantly reduced the size of tumors in mice. Survival rates also increased and no toxic effects on tissues and organs were observed.

This is the first work to demonstrate the significance and translational potential of nanodiamonds in the treatment of chemotherapy-resistant cancers. The results will be published March 9 in the journal Science Translational Medicine.

"Our results show the nanodiamond's enormous translational potential towards significantly improving the efficacy of drug-resistant cancer treatment and simultaneously improving safety," said Ho, who led the research and is corresponding author of the paper. "These are critical benefits. We chose to study these chemo-resistant cancers because they remain one of the biggest barriers to treating cancer and improving patient survival."

Ho is with Northwestern's McCormick School of Engineering and Applied Science and is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Nanodiamonds are carbon-based materials approximately 2 to 8 nanometers in diameter. Each nanodiamond's surface possesses functional groups that allow a wide spectrum of compounds to be attached to it, including chemotherapy agents.

The researchers took these nanodiamonds and reversibly bound the common chemotherapy drug doxorubicin to them using a scalable synthesis process, which enhances sustained drug release.

Ho and his colleagues studied mouse models with liver and breast cancers. In these resistant cancers, drugs are able to get inside the tumors but are kicked right back out because of an innate response in the liver and breast to expel these drugs.

They treated one group of animals with the doxorubicin-nanodiamond complexes and another group with the drug alone. In those treated with the nanodiamond complexes, the chemotherapeutic remained in circulation longer -- up to 10 times longer -- than those treated with the drug alone. In addition, the drug itself was retained within both types of tumors for a significantly longer period of time. Such a high retention rate means a smaller amount of the very toxic drug would need to be administered, thus reducing side effects.

The researchers also found that the drug-nanodiamond complexes had no negative effect on the white blood cell count. This is especially important for cancer treatment: if the white blood cell count drops below a certain level, treatment is stopped due to the risk of major complications.

"Nanodiamonds have excellent biocompatibility, and the process of formulating nanodiamond-drug complexes is very inexpensive," said Edward K. Chow, a postdoctoral fellow with the G.W. Hooper Foundation and the University of California, San Francisco, and first author of the paper. "Nanodiamonds possess numerous hallmarks of an ideal drug delivery system and are promising platforms for advancing cancer therapy."

The paper is titled "Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment." In addition to Ho and Chow, other authors of the paper are Xue-Qing Zhang, Mark Chen, Robert Lam, Erik Robinson, Houjin Huang and Daniel Schaffer, from Northwestern; Andrei Goga, from the University of California, San Francisco; and Eiji Osawa, from the NanoCarbon Research Institute, Japan.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. K. Chow, X.-Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho. Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Science Translational Medicine, 2011; 3 (73): 73ra21 DOI: 10.1126/scitranslmed.3001713

Cite This Page:

Northwestern University. "Tiny gems take big step toward battling cancer." ScienceDaily. ScienceDaily, 21 March 2011. <www.sciencedaily.com/releases/2011/03/110309141727.htm>.
Northwestern University. (2011, March 21). Tiny gems take big step toward battling cancer. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/03/110309141727.htm
Northwestern University. "Tiny gems take big step toward battling cancer." ScienceDaily. www.sciencedaily.com/releases/2011/03/110309141727.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins