Featured Research

from universities, journals, and other organizations

Better batteries for electric cars

Date:
March 15, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
The breakthrough with electric cars is a long time coming -- not least on account of their key component, the battery. Lithium-ion batteries are still too expensive and their range too limited. New materials should pave the way for better batteries. Simulation software from researchers is helping speed up the development process.

Microscopic representation of the battery using the BEST simulation software. The porous electrodes can be seen on the right and left.
Credit: Copyright Fraunhofer ITWM

The breakthrough with electric cars is a long time coming -- not least on account of their key component, the battery. Lithium-ion batteries are still too expensive and their range too limited. New materials should pave the way for better batteries. Simulation software from researchers is helping speed up the development process.

Electric cars are the future -- a view shared by government and the automotive industry alike.  By 2020, a million passenger cars with an electric drive should be on the roads in Germany. The ADAC, the German motoring organization, found out in a survey, 74 percent of those surveyed would buy an electric car if they did not have to compromise in terms of cost, comfort and safety.

Consumers are not willing to compromise one iota when it comes to range. Around one third of drivers are looking for a range of at least 500 kilometers. And here is the crux: A lack of charging stations and limited battery life have so far prevented compact electric vehicles from going mainstream. The lithium-ion batteries used by most automakers are simply too heavy, too expensive and go flat too quickly. New materials should improve the performance, service life and safety of the energy storage device, yet the development of these kinds of materials is time-consuming and costly. In the Fraunhofer System Research for Electromobility (FSEM) project, researchers from the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern are developing software to simulate lithium-ion batteries, which should in turn speed up this process and make it more efficient. The new software is dubbed BEST, short for Battery and Electrochemistry Simulation Tool.

A lithium-ion battery consists of two porous electrodes kept apart by a separator filled with electrolyte. Lithium ions flow between the electrodes when the battery is charged and discharged. "Battery performance depends on the materials used in the components. These materials need to work in harmony with each other," explains Jochen Zausch, a scientist in the Complex Fluids group at Fraunhofer ITWM. "Various material combinations can be simulated using our software, enabling us to come up with the ideal mix. The kind of trial-and-error testing done in the past is no longer necessary."

The Fraunhofer ITWM researchers have managed to simulate on macroscopic and microscopic level the entire battery cell as well as the transport and reaction processes of the lithium ions themselves. "We can show the microscopic structure of the electrodes. Every individual pore measuring 10 micrometers can be seen -- something none of today's off-the-shelf programs can do. The position and shape of the electrodes can also be varied," says Zausch. By resolving the structure of the electrodes in three dimensions, parameters such as lithium ion concentrations and current density can be calculated. For these computations a specializes "Finite Volume" code is used that was developed and implemented at the ITWM. The distribution of the current flow provides an indication of heat production in the battery. Therefore, the software can pinpoint possible hotspots that may overheat and can lead to ignition of the battery. Aging effects can also be assessed using BEST. After all, temperature development within the battery affects its service life. The scientists intend to upgrade the program to include aging models which would make these kinds of studies even easier to conduct.

"Ultimately, BEST should help both automakers and manufacturers of electric storage devices to build robust, safe batteries with greater range and, at the same time, improved acceleration," says Zausch in conclusion. The software can be seen at the Hannover Messe from April 4 to 8.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Better batteries for electric cars." ScienceDaily. ScienceDaily, 15 March 2011. <www.sciencedaily.com/releases/2011/03/110314092001.htm>.
Fraunhofer-Gesellschaft. (2011, March 15). Better batteries for electric cars. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/03/110314092001.htm
Fraunhofer-Gesellschaft. "Better batteries for electric cars." ScienceDaily. www.sciencedaily.com/releases/2011/03/110314092001.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins