Featured Research

from universities, journals, and other organizations

Quantum cryptography? Physicists move closer to efficient single-photon sources

Date:
March 17, 2011
Source:
American Institute of Physics
Summary:
A team of physicists has taken a giant step toward realizing efficient single-photon sources, which are expected to enable much-coveted completely secure optical communications, also known as "quantum cryptography."

A team of physicists in the United Kingdom has taken a giant step toward realizing efficient single-photon sources, which are expected to enable much-coveted completely secure optical communications, also known as "quantum cryptography."

The team presents its findings in Applied Physics Letters, a journal published by the American Institute of Physics.

Fluorescent "defect centers" in diamond act like atomic-scale light sources and are trapped in a transparent material that's large enough to be picked up manually. They don't need to be kept at super cold cryogenic temperatures or trapped in large electromagnetic fields to be stable -- unlike quantum dots or trapped atoms.

This makes them strong contenders for use as sources of single photons (the quantum light particle) in provably secure quantum cryptography schemes, explains J. P. Hadden, a Ph.D. candidate in the Centre for Quantum Photonics, Department of Electrical and Electronic Engineering & H. H. Wills Physics Laboratory at the University of Bristol.

"Defect centers could also be used as building blocks for 'solid-state quantum computers,' which would use quantum effects to solve problems that are not efficiently solvable with current computer technology," Hadden says.

To fulfill the potential of diamond defect centers, it's essential that the light be collected efficiently from the diamond material. But this collection efficiency is dramatically reduced by reflection and refraction of light passing through the diamond-air interface.

"We managed to show an improvement in the brightness of these defect centers of up to ten times by etching hemispherical 'solid immersion lenses' into the diamond," notes Hadden. "This is an important result, showing how nanofabrication techniques can complement and enhance quantum technologies, and opens the door to diamond-defect-center-based implementations of quantum cryptography and quantum computation."

More recently, Hadden and colleagues developed a technique that allows them to reliably etch these structures over previously characterized defect centers to a precision of about 100 nanometers -- another significant step toward a practical and repeatable combination of nanotechnology and quantum optics.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. O’Brien, J. G. Rarity. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Applied Physics Letters, 2010; 97 (24): 241901 DOI: 10.1063/1.3519847

Cite This Page:

American Institute of Physics. "Quantum cryptography? Physicists move closer to efficient single-photon sources." ScienceDaily. ScienceDaily, 17 March 2011. <www.sciencedaily.com/releases/2011/03/110316161914.htm>.
American Institute of Physics. (2011, March 17). Quantum cryptography? Physicists move closer to efficient single-photon sources. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/03/110316161914.htm
American Institute of Physics. "Quantum cryptography? Physicists move closer to efficient single-photon sources." ScienceDaily. www.sciencedaily.com/releases/2011/03/110316161914.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins