Featured Research

from universities, journals, and other organizations

Digital versus analog control over cortical inhibition in the brain

Date:
March 29, 2011
Source:
Public Library of Science
Summary:
In the cerebral cortex, the balance between excitation and inhibition is thought to be mediated by the primary mode of neuronal communication: "all-or-none" action potentials, or spikes. However, researchers in China have discovered a new strategy by which the cortex can maintain this balance, by showing that the amount of inhibition depends on the membrane potentials in pyramidal cells, which represents an "analog" strategy.

In the cerebral cortex, the balance between excitation (pyramidal neurons) and inhibition (interneurons) is thought to be mediated by the primary mode of neuronal communication: "all-or-none" action potentials, or spikes. However, Dr. Yousheng Shu's research group at the Institute of Neuroscience of Chinese Academy of Sciences has discovered a new strategy by which the cortex can maintain this balance, by showing that the amount of inhibition depends on the membrane potentials (Vm) in pyramidal cells, which represents an "analog" strategy.

Their results are published in the online, open access journal PLoS Biology.

The cortex consists of recurrent networks, where pyramidal cells send action potentials down their axons to excite interneurons, which in turn inhibit the pyramidal cells through disynaptic inhibitory postsynaptic potentials (IPSPs). This back-and-forth process serves to keep a stable excitation/inhibition ratio critical for proper cortical function. In the classic view, these action potentials are delivered if and only if the Vm crosses a certain threshold and are invariable in their shape, which is the all-or-none fashion of rapid neuron-to-neuron communication. But is there an analog component?

Using paired recording from two pyramidal cells within a recurrent circuit, Dr. Shu and colleagues discovered that a slight positive shift (depolarization) in Vm of the first pyramidal cell could increase the disynaptic IPSPs received by the second one. In other words, this study provides the first evidence demonstrating that an analog change of excitation can regulate feedback inhibition, with the information carriers no longer stereotyped.

"This type of regulation could be a key mechanism for the cortex to maintain a dynamic balance of excitation and inhibition, and generate appropriate cortical rhythms under different behavioral states," said Dr. Shu, "It may also play an important role in preventing abnormal cortical activities including epileptiform activity during seizures."

Therefore, future studies may focus on whether the Vm-dependent modulation of inhibition has an impact on information processing under both normal and pathological conditions, and whether the analog signaling influences the operation of other cortical circuits. Nevertheless, to what extent these findings may influence the conceptual framework of a "digital brain" is still open to further computational and theoretical investigation.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jie Zhu, Man Jiang, Mingpo Yang, Han Hou, Yousheng Shu. Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex. PLoS Biology, 2011; 9 (3): e1001032 DOI: 10.1371/journal.pbio.1001032

Cite This Page:

Public Library of Science. "Digital versus analog control over cortical inhibition in the brain." ScienceDaily. ScienceDaily, 29 March 2011. <www.sciencedaily.com/releases/2011/03/110322172217.htm>.
Public Library of Science. (2011, March 29). Digital versus analog control over cortical inhibition in the brain. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/03/110322172217.htm
Public Library of Science. "Digital versus analog control over cortical inhibition in the brain." ScienceDaily. www.sciencedaily.com/releases/2011/03/110322172217.htm (accessed September 30, 2014).

Share This



More Mind & Brain News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
Your Spouse's Personality May Influence Your Earnings

Your Spouse's Personality May Influence Your Earnings

Newsy (Sep. 26, 2014) Research from Washington University suggest people with conscientious spouses have greater career success. Video provided by Newsy
Powered by NewsLook.com
Can A Blood Test Predict Psychosis Risk?

Can A Blood Test Predict Psychosis Risk?

Newsy (Sep. 26, 2014) Researchers say certain markers in the blood can predict risk of psychosis later in the life. The test can aid in early treatment for the condition. Video provided by Newsy
Powered by NewsLook.com
Harpist Soothes Gorillas, Orangutans With Music

Harpist Soothes Gorillas, Orangutans With Music

AP (Sep. 25, 2014) Teri Tacheny, a harpist, has a loyal following of fans who appreciate her soothing music. Every month, gorillas, orangutans and monkeys amble down to hear her play at the Como Park Zoo in Minnesota. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins