Featured Research

from universities, journals, and other organizations

Rainbow-trapping scientist now strives to slow light waves even further

Date:
April 12, 2011
Source:
University at Buffalo
Summary:
An electrical engineer who previously demonstrated experimentally the "rainbow trapping effect" -- a phenomenon that could boost optical data storage and communications -- is now working to capture all the colors of the rainbow.

New nanomaterials created by Qiaoqiang Gan allow for the trapping of different wavelengths of light, which could boost data storage and communications.
Credit: Douglas Levere, UB Communications

An electrical engineer at the University at Buffalo, who previously demonstrated experimentally the "rainbow trapping effect" -- a phenomenon that could boost optical data storage and communications -- is now working to capture all the colors of the rainbow.

In a paper published March 29 in the Proceedings of the National Academy of Sciences, Qiaoqiang Gan (pronounced "Chow-Chung" and "Gone"), PhD, an assistant professor of electrical engineering at the University at Buffalo's School of Engineering and Applied Sciences, and his colleagues at Lehigh University, where he was a graduate student, described how they slowed broadband light waves using a type of material called nanoplasmonic structures.

Gan explains that the ultimate goal is to achieve a breakthrough in optical communications called multiplexed, multiwavelength communications, where optical data can potentially be tamed at different wavelengths, thus greatly increasing processing and transmission capacity.

He notes that it is widely recognized that if light could ever be stopped entirely, new possibilities would open up for data storage.

"At the moment, processing data with optical signals is limited by how quickly the signal can be interpreted," he says. "If the signal can be slowed, more information could be processed without overloading the system."

Gan and his colleagues created nanoplasmonic structures by making nanoscale grooves in metallic surfaces at different depths, which alters the materials' optical properties.

These plasmonic chips provide the critical connection between nanoelectronics and photonics, Gan explains, allowing these different types of devices to be integrated, a prerequisite for realizing the potential of optical computing, "lab-on-a-chip" biosensors and more efficient, thin-film photovoltaic materials.

According to Gan, the optical properties of the nanoplasmonic structures allow different wavelengths of light to be trapped at different positions in the structure, potentially allowing for optical data storage and enhanced nonlinear optics.

The structures Gan developed slow light down so much that they are able to trap multiple wavelengths of light on a single chip, whereas conventional methods can only trap a single wavelength in a narrow band.

"Light is usually very fast, but the structures I created can slow broadband light significantly," says Gan. "It's as though I can hold the light in my hand."

That, Gan explains, is because of the structures' engineered surface "plasmon resonances," where light excites the waves of electrons that oscillate back and forth on metal surfaces.

In this case, he says, light can be slowed down and trapped in the vicinity of resonances in this novel, dispersive structural material.

Gan and his colleagues also found that because the nanoplasmonic structures they developed can trap very slow resonances of light, they can do so at room temperature, instead of at the ultracold temperatures that are required in conventional slow-light technologies.

"In the PNAS paper, we showed that we trapped red to green," explains Gan. "Now we are working on trapping a broader wavelength, from red to blue. We want to trap the entire rainbow."

Gan, who was hired at UB under the UB 2020 strategic strength in Integrated Nanostructured Systems, will be working toward that goal, using the ultrafast light source in UB's Department of Electrical Engineering in the laboratory of UB professor and vice president for research Alexander N. Cartwright.

"This ultrafast light source will allow us to measure experimentally just how slow is the light that we have trapped in our nanoplasmonic structures," Gan explains. "Once we know that, we will be able to demonstrate our capability to manipulate light through experiments and optimize the structure to slow the light further."

Co-authors with Gan on the study are Filbert Bertoli, Yongkang Gao, Yujie Ding, Kyle Wagner and Dmitri Vezenov, all of Lehigh University.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, F. J. Bartoli. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proceedings of the National Academy of Sciences, 2011; 108 (13): 5169 DOI: 10.1073/pnas.1014963108

Cite This Page:

University at Buffalo. "Rainbow-trapping scientist now strives to slow light waves even further." ScienceDaily. ScienceDaily, 12 April 2011. <www.sciencedaily.com/releases/2011/04/110412162406.htm>.
University at Buffalo. (2011, April 12). Rainbow-trapping scientist now strives to slow light waves even further. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/04/110412162406.htm
University at Buffalo. "Rainbow-trapping scientist now strives to slow light waves even further." ScienceDaily. www.sciencedaily.com/releases/2011/04/110412162406.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins