Featured Research

from universities, journals, and other organizations

New fracture resistance mechanisms provided by graphene

Date:
April 14, 2011
Source:
University of Arizona College of Engineering
Summary:
Graphene can be used to enhance the toughness of ceramics, new research shows. This discovery -- which increased the resulting ceramic composite's fracture resistance by over 200 percent -- could potentially be used to enhance toughness for a wide range of high performance ceramic materials for aerospace and other applications.

High resolution SEM image after colloidal processing indicating partially exfoliated GPL mixed with well-dispersed Si3N4 particles. The images clearly indicate GPL decorated with Si3N4 particles; the Si3Nk4 particles are well-dispersed throughout the surface area of the sheets.
Credit: ACS Publications/UA Engineering

A team of researchers from the University of Arizona and Rensselaer Polytechnic Institute have increased the toughness of ceramic composites by using graphene reinforcements that enable new fracture resistance mechanisms in the ceramic.

The research, lead by Assistant Professor Erica L. Corral from the Materials Science and Engineering Department at the University of Arizona in Tucson, and Professor Nikhil Koratkar from the Department of Mechanical, Aerospace and Nuclear Engineering at Rensselaer Polytechnic Institute in Troy, New York, was recently published in ACS Nano, the monthly journal of the American Chemical Society.

"Our work on graphene ceramic composites is the first of its kind in the open literature and shows mechanisms for toughening using two-dimensional graphene sheets that have yet to be seen in ceramic composites," said Corral. "We have significantly increased the toughness of a ceramic and made the first observations of graphene that arrest crack propagation and force the crack to change directions in not just two but also three dimensions."

These observations will lead to a new approach for composite design using graphene in ceramics that has not been possible using conventional fiber reinforcements, says Corral. "The high surface area and unique two-dimensional sheet geometry seem to be better at arresting crack growth in ceramics over conventional fibers that are one-dimensional reinforcements," she said.

"This is a classic example of highly successful interdisciplinary research across universities that was unheard of 15 or 20 years ago, but is now becoming critically important if we are to continue to make breakthrough discoveries and maintain the competiveness of the United States in the 21st century," said Prof. Koratkar of the Rensselaer Polytechnic Institute. Koratkar met Dr. Corral at a National Science Foundation-sponsored nanoscience conference where she delivered a talk on her work in carbon nanotube ceramic composites.

Koratkar was impressed with Corral's presentation, and approached her regarding the possibility of exploring the use of graphene to increase toughening in brittle ceramics. "Over the next year we leveraged my lab's expertise in the synthesis of bulk quantities of graphene platelets and the expertise of Corral's group in ceramic composite fabrication and testing," Koratkar said. "Our results published in ACS Nano show the tremendous promise that graphene shows in toughening ceramics that are notoriously brittle and prone to failure. This work could open up an entirely new graphene ceramic nanocomposites field of study," he says.

This is the first published work describing the use of graphene nanofiller to reinforce ceramics and will appear in the journal ACS Nano. This discovery -- measured to increase fracture resistance of the resulting ceramic nanocomposite by over 200 percent -- could potentially be used to enhance toughness for a range of ceramic materials, enabling their widespread use in high-performance, structural applications that require operating temperatures greater than 1,000 degrees Celsius while maintaining structural integrity.


Story Source:

The above story is based on materials provided by University of Arizona College of Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Luke S. Walker, Victoria R. Marotto, Mohammad A. Rafiee, Nikhil Koratkar, Erica L. Corral. Toughening in Graphene Ceramic Composites. ACS Nano, 2011; 110331091002068 DOI: 10.1021/nn200319d

Cite This Page:

University of Arizona College of Engineering. "New fracture resistance mechanisms provided by graphene." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110413093214.htm>.
University of Arizona College of Engineering. (2011, April 14). New fracture resistance mechanisms provided by graphene. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/04/110413093214.htm
University of Arizona College of Engineering. "New fracture resistance mechanisms provided by graphene." ScienceDaily. www.sciencedaily.com/releases/2011/04/110413093214.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins