Featured Research

from universities, journals, and other organizations

Chance discovery may revolutionize hydrogen production

Date:
April 14, 2011
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Producing hydrogen in a sustainable way is a challenge and production cost has so far proven to be too high. Now researchers have discovered that a molybdenum based catalyst is produced at room temperature, inexpensive and efficient.

Using a molybdenum based catalyst, hydrogen bubbles are made cheaply and at room temperature.
Credit: EPFL / Alain Herzog

Producing hydrogen in a sustainable way is a challenge and production cost has so far proven to be too high. Now a team led by EPFL Professor Xile Hu has discovered that a molybdenum based catalyst is produced at room temperature, inexpensive and efficient.

The results of the research are published online in Chemical Science. An international patent based on this discovery has just been filled.

Existing in large quantities on Earth, water is composed of hydrogen and oxygen. It can be broken down by applying an electrical current; this is the process known as electrolysis. To improve this particularly slow reaction, platinum is generally used as a catalyst. However, platinum is a particularly expensive material that has tripled in price over the last decade. Now EPFL scientists have shown that amorphous molybdenum sulphides, found abundantly, are efficient catalysts and hydrogen production cost can be significantly lowered.

Industrial prospects

The new catalysts exhibit many advantageous technical characteristics. They are stable and compatible with acidic, neutral or basic conditions in water. Also, the rate of the hydrogen production is faster than other catalysts of the same price. The discovery opens up some interesting possibilities for industrial applications such as in the area of solar energy storage.

It's only by chance that Daniel Merki, Stéphane Fierro, Heron Vrubel and Xile Hu made this discovery during an electrochemical experience. "It's a perfect illustration of the famous serendipity principle in fundamental research," as Xile Hu emphasizes: "Thanks to this unexpected result, we've revealed a unique phenomenon," he explains. "But we don't yet know exactly why the catalysts are so efficient."

The next stage is to create a prototype that can help to improve sunlight-driven hydrogen production. But a better understanding of the observed phenomenon is also required in order to optimize the catalysts.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Merki, Stéphane Fierro, Heron Vrubel, Xile Hu. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chemical Science, 2011; DOI: 10.1039/C1SC00117E

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Chance discovery may revolutionize hydrogen production." ScienceDaily. ScienceDaily, 14 April 2011. <www.sciencedaily.com/releases/2011/04/110414073549.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2011, April 14). Chance discovery may revolutionize hydrogen production. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2011/04/110414073549.htm
Ecole Polytechnique Fédérale de Lausanne. "Chance discovery may revolutionize hydrogen production." ScienceDaily. www.sciencedaily.com/releases/2011/04/110414073549.htm (accessed September 14, 2014).

Share This



More Matter & Energy News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) — Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) — NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Soccer Players' Feet to Generate Electricity

Soccer Players' Feet to Generate Electricity

AP (Sep. 11, 2014) — A new energy-generating soccer field was inaugurated in Brazil. The field is built on energy-capturing tiles, allowing players to generate electricity as they run and compete. (Sept. 11) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins