Featured Research

from universities, journals, and other organizations

Astronomers can tune in to radio auroras to find exoplanets

Date:
April 19, 2011
Source:
Royal Astronomical Society (RAS)
Summary:
Detecting exoplanets that orbit at large distances from their star remains a challenge for planet hunters. Now, scientists have shown that emissions from the radio aurora of planets like Jupiter should be detectable by radio telescopes such as LOFAR, which will be completed later this year.

Image of Jupiter’s northern UV auroras obtained using the Advanced Camera for Surveys onboard HST in February 2007.
Credit: Nichols/ESA/NASA/HST

Detecting exoplanets that orbit at large distances from their star remains a challenge for planet hunters. Now, scientists at the University of Leicester have shown that emissions from the radio aurora of planets like Jupiter should be detectable by radio telescopes such as LOFAR, which will be completed later this year. Dr Jonathan Nichols will present results at the RAS National Astronomy Meeting in Llandudno, Wales, on April 18.

"This is the first study to predict the radio emissions by exoplanetary systems similar to those we find at Jupiter or Saturn. At both planets, we see radio waves associated with auroras generated by interactions with ionised gas escaping from the volcanic moons, Io and Enceladus. Our study shows that we could detect emissions from radio auroras from Jupiter-like systems orbiting at distances as far out as Pluto," said Nichols.

Of the hundreds of exoplanets that have been detected to date, less than 10% orbit at distances where we find the outer planets in our own Solar System. Most exoplanets have been found by the transit method, which detects a dimming in light as a planet moves in front of a star, or by looking for a wobble as a star is tugged by the gravity of an orbiting planet. With both these techniques, it is easiest to detect planets close in to the star and moving very quickly.

"Jupiter and Saturn take 12 and 30 years respectively to orbit the Sun, so you would have to be incredibly lucky or look for a very long time to spot them by a transit or a wobble," said Dr Nichols.

Dr Nichols examined how the radio emissions for Jupiter-like exoplanets would be affected by the rotation rate of the planet, the rate of plasma outflow from a moon, the orbital distance of the planet and the ultraviolet (UV) brightness of the parent star.

He found that, in many scenarios, exoplanets orbiting UV-bright stars between 1 and 50 Astronomical Units (AU) would generate enough radio power to be detectable from Earth. For the brightest stars and fastest spinning planets, the emissions would be detectable from systems 150 light years away from Earth.

"In our Solar System, we have a stable system with outer gas giants and inner terrestrial planets, like Earth, where life has been able to evolve. Being able to detect Jupiter-like planets may help us find planetary systems like our own, with other planets that are capable of supporting life," said Dr Nichols.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Cite This Page:

Royal Astronomical Society (RAS). "Astronomers can tune in to radio auroras to find exoplanets." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110418084007.htm>.
Royal Astronomical Society (RAS). (2011, April 19). Astronomers can tune in to radio auroras to find exoplanets. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2011/04/110418084007.htm
Royal Astronomical Society (RAS). "Astronomers can tune in to radio auroras to find exoplanets." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418084007.htm (accessed September 22, 2014).

Share This



More Space & Time News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com
3-D Printing Enters The Final Frontier

3-D Printing Enters The Final Frontier

Newsy (Sep. 21, 2014) NASA sent a 3-D printer to the International Space Station, bringing manufacturing to space for the first time. Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins