Featured Research

from universities, journals, and other organizations

Why the eye is better than a camera at capturing contrast and faint detail simultaneously

Date:
May 3, 2011
Source:
University of California - Berkeley
Summary:
The discovery nearly 50 years ago of lateral inhibition -- that the cones in the eye inhibit their neighbors by way of negative feedback -- explained the keen edge detail we see, but never accounted for the fact that we can see faint detail near these edges and in the shadows. Neurobiologists have discovered positive feedback among the cones that completes the picture.

Cones normally release the neurotransmitter glutamate in the dark, while light decreases glutamate release. This graph of neurotransmitter release shows what happens when cone cells are exposed to a dark spot in a light background (top) under various scenarios, including no feedback (green trace) and only negative feedback from horizontal cells (red trace). Negative feedback to many cones enhances edges, but would decrease detail in dark areas were it not for newly discovered positive feedback that is localized to only a few cone cells (blue trace).
Credit: Richard Kramer lab, UC Berkeley

The human eye long ago solved a problem common to both digital and film cameras: how to get good contrast in an image while also capturing faint detail.

Related Articles


Nearly 50 years ago, physiologists described the retina's tricks for improving contrast and sharpening edges, but new experiments by University of California, Berkeley, neurobiologists show how the eye achieves this without sacrificing shadow detail.

"One of the big success stories, and the first example of information processing by the nervous system, was the discovery that the nerve cells in the eye inhibit their neighbors, which allows the eye to accentuate edges," said Richard Kramer, UC Berkeley professor of molecular and cell biology. "This is great if you only care about edges. But we also want to know about the insides of objects, especially in dim light."

Kramer and former graduate student Skyler L. Jackman, now a post-doctoral fellow at Harvard University, discovered that while light-sensitive nerve cells in the retina inhibit dozens of their close neighbors, they also boost the response of the nearest one or two nerve cells.

That extra boost preserves the information in individual light detecting cells -- the rods and cones -- thereby retaining faint detail while accentuating edges, Kramer said. The rods and cones thus get both positive and negative feedback from their neighbors.

"By locally offsetting negative feedback, positive feedback boosts the photoreceptor signal while preserving contrast enhancement," he said.

Jackman, Kramer and their colleagues at the University of Nebraska Medical Center in Omaha report their findings May 3 in the journal PLoS Biology. Kramer also will report the findings at the 2011 annual meeting of the Association for Research in Vision and Ophthalmology in Ft. Lauderdale, Fla.

From horseshoe crabs to humans

The fact that retinal cells inhibit their neighbors, an activity known as "lateral inhibition," was first observed in horseshoe crabs by physiologist H. Keffer Hartline. That discovery earned him a share of the 1967 Nobel Prize in Physiology or Medicine. This form of negative feedback was later shown to take place in the vertebrate eye, including the human eye, and has since been found in many sensory systems as a way, for example, to sharpen the discrimination of pitch or touch.

Lateral inhibition fails, however, to account for the eye's ability to detect faint detail near edges, including the fact that we can see small, faint spots that ought to be invisible if their detection is inhibited by encircling retinal cells.

Kramer noted that the details of lateral inhibition are still a mystery half a century after Hartline's discovery. Neurobiologists still debate whether the negative feedback involves an electrical signal, a chemical neurotransmitter, or protons that change the acidity around the cell.

"The field is at an impasse," Kramer said. "And we were surprised to find this fundamental new phenomenon, despite the fact that the anatomy of the retina has been known for more than 40 years."

The retina in vertebrates is lined with a sheet of photoreceptor cells: the cones for day vision and the rods for night vision. The lens of the eye focuses images onto this sheet, and like the pixels in a digital camera, each photoreceptor generates an electrical response proportional to the intensity of the light falling on it. The signal releases a chemical neurotransmitter (glutamate) that affects neurons downstream, ultimately reaching the brain.

Unlike the pixels of a digital camera, however, photoreceptors affect the photoreceptors around them through so-called horizontal cells, which underlie and touch as many as 100 individual photoreceptors. The horizontal cells integrate signals from all these photoreceptors and provide broad inhibitory feedback. This feedback is thought to underlie lateral inhibition, a process that sharpens our perception of contrast and color, Kramer said.

The new study shows that the horizontal cells also send positive feedback to the photoreceptors that have detected light, and perhaps to one or two neighboring photoreceptors.

"Positive feedback is local, whereas negative feedback extends laterally, enhancing contrast between center and surround," Kramer said.

Electrical vs. chemical signals

The two types of feedback work by different mechanisms, the researchers found. The horizontal cells undergo an electrical change when they receive neurotransmitter signals from the photoreceptors, and this voltage change quickly propagates throughout the cell, affecting dozens of nearby photoreceptors to lower their release of the glutamate neurotransmitter.

The positive feedback, however, involves chemical signaling. When a horizontal cell receives glutamate from a photoreceptor, calcium ions flow into the horizontal cell. These ions trigger the horizontal cell to "talk back" to the photoreceptor, Kramer said. Because calcium doesn't spread very far within the horizontal cell, the positive feedback signal stays local, affecting only one or two nearby photoreceptors.

The discovery of a new and unsuspected feedback mechanism in a very well-studied organ is probably related to how the eye is studied, Kramer said. Electrodes are typically stuck into the retina to both change the voltage in cells and record changes in voltage. Because the new signal is chemical, not electrical, it would have been easily missed.

Jackman and Kramer found the same positive feedback in the cones of a zebrafish, lizard, salamander, anole (whose retina contains only cones) and rabbit, proving that "this is not just some weird thing that happens in lizards; it seems to be true across all vertebrates and presumably humans," Kramer said.

The research was supported by the National Institutes of Health and the organization Research to Prevent Blindness.

Coauthors with Kramer and Jackman are Norbert Babai and Wallace B. Thoreson of the Department of Ophthalmology at the University of Nebraska Medical Center and James J. Chambers of the Department of Chemistry at the University of Massachusetts, Amherst.


Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Robert Sanders, Media Relations. Note: Materials may be edited for content and length.


Journal Reference:

  1. Skyler L. Jackman, Norbert Babai, James J. Chambers, Wallace B. Thoreson, Richard H. Kramer. A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors. PLoS Biology, 2011; 9 (5): e1001057 DOI: 10.1371/journal.pbio.1001057

Cite This Page:

University of California - Berkeley. "Why the eye is better than a camera at capturing contrast and faint detail simultaneously." ScienceDaily. ScienceDaily, 3 May 2011. <www.sciencedaily.com/releases/2011/05/110503171734.htm>.
University of California - Berkeley. (2011, May 3). Why the eye is better than a camera at capturing contrast and faint detail simultaneously. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2011/05/110503171734.htm
University of California - Berkeley. "Why the eye is better than a camera at capturing contrast and faint detail simultaneously." ScienceDaily. www.sciencedaily.com/releases/2011/05/110503171734.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins