Featured Research

from universities, journals, and other organizations

Nicotine and cocaine leave similar mark on brain after first contact

Date:
May 4, 2011
Source:
University of Chicago Medical Center
Summary:
The effects of nicotine upon brain regions involved in addiction mirror those of cocaine, according to new neuroscience research. A single 15-minute exposure to nicotine caused a long-term increase in the excitability of neurons involved in reward, according to a new study.

The effects of nicotine upon brain regions involved in addiction mirror those of cocaine, according to new neuroscience research.

A single 15-minute exposure to nicotine caused a long-term increase in the excitability of neurons involved in reward, according to a study published in The Journal of Neuroscience. The results suggest that nicotine and cocaine hijack similar mechanisms of memory on first contact to create long-lasting changes in a person's brain.

"Of course, for smoking it's a very long-term behavioral change, but everything starts from the first exposure," said Danyan Mao, PhD, postdoctoral researcher at the University of Chicago Medical Center. "That's what we're trying to tackle here: when a person first is exposed to a cigarette, what happens in the brain that might lead to a second cigarette?"

Learning and memory are thought to be encoded in the brain via synaptic plasticity, the long-term strengthening and weakening of connections between neurons. When two neurons are repeatedly activated together, a stronger bond forms between them, increasing the ability of one to excite the other.

Previous research in the laboratory of Daniel McGehee, PhD, neuroscientist and associate professor in the Department of Anesthesia & Critical Care at the Medical Center, discovered that nicotine could promote plasticity in a region of the brain called the ventral tegmental area (VTA). Neurons that originate in the VTA release the neurotransmitter dopamine, known to play a central role in the effects of addictive drugs and natural rewards such as food and sex.

"We know that a single exposure to physiologically relevant concentrations of nicotine can lead to changes in the synaptic drive in the circuitry that lasts for several days," said McGehee, senior author of this study. "That idea is very important in how addiction forms in humans and animals."

In the new experiments, Mao monitored the electrical activity of VTA dopamine neurons in slices of brain dissected from adult rats. Each slice was bathed for 15 minutes in a concentration of nicotine similar to the amount that would reach the brain after smoking a single cigarette. After 3-5 hours, Mao conducted electrophysiology experiments to detect the presence of synaptic plasticity and determine which neurotransmitter receptors were involved in its development.

Mao discovered that nicotine-induced synaptic plasticity in the VTA is dependent upon one of the drug's usual targets, a receptor for the neurotransmitter acetylcholine located on the dopamine neurons. But another element found necessary for nicotine's synaptic effects was a surprise: the D5 dopamine receptor, a component previously implicated in the action of cocaine. Blocking either of these receptors during nicotine exposure eliminated the drug's ability to cause persistent changes in excitability.

"We found that nicotine and cocaine employ similar mechanisms to induce synaptic plasticity in dopamine neurons in VTA," Mao said.

While the subjective effects of nicotine and cocaine are very different in humans, the overlapping effects of the two drugs on the reward system of the brain may explain why both are highly addictive substances, the researchers said.

"We know without question that there are big differences in the way these drugs affect people," McGehee said. "But the idea that nicotine is working on the same circuitry as cocaine does point to why so many people have a hard time quitting tobacco, and why so many who experiment with the drug end up becoming addicted."

The overlap between nicotine and cocaine effects at the D5 receptor may also offer a novel strategy for preventing or treating addiction. However, currently-known blockers of the receptor also block another dopamine receptor, D1, that is important for normal, healthy motivation and movement.

"This dopamine receptor is attractive as a potential target," McGehee said. "The real challenge is to tweak the addictive effect of drugs like nicotine or other psychostimulants without totally crushing the person's desire to pursue healthy behavior."

Future research will also focus on whether repeated exposure to nicotine, as would occur in a regular smoker, changes the drug's effects on synaptic plasticity in the VTA. In the meantime, the current study builds evidence that addictive drugs appropriate the neurobiological tools of learning and memory to create long-term changes in brain reward pathways.

"It's all fitting with the overriding idea that changes in synaptic strength are part of the way these drugs motivate behavior in a persistent way," McGehee said.

The study, "Nicotine Potentiation of Excitatory Inputs to Ventral Tegmental Dopamine Neurons," will be published May 4, 2011 by The Journal of Neuroscience. In addition to Mao and McGehee, Keith Gallagher of the University of Chicago is a co-author.

The research was supported by grants from the Women's Council of the Brain Research Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago Medical Center. "Nicotine and cocaine leave similar mark on brain after first contact." ScienceDaily. ScienceDaily, 4 May 2011. <www.sciencedaily.com/releases/2011/05/110503171745.htm>.
University of Chicago Medical Center. (2011, May 4). Nicotine and cocaine leave similar mark on brain after first contact. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/05/110503171745.htm
University of Chicago Medical Center. "Nicotine and cocaine leave similar mark on brain after first contact." ScienceDaily. www.sciencedaily.com/releases/2011/05/110503171745.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins