Featured Research

from universities, journals, and other organizations

New way to duplicate immunity boosting cells to unprecedented levels

Date:
May 19, 2011
Source:
University of Minnesota
Summary:
Researchers have discovered a method to quickly and exponentially grow regulatory T-cells -- also known as "suppressor cells." The new process enables replication of the cells by tens of millions in several weeks, a dramatic increase over previous duplication methods. Historically, regulatory T-cells have been difficult to replicate.

University of Minnesota Medical School researchers have discovered a method to quickly and exponentially grow regulatory T-cells -- also known as "suppressor cells." The new process enables replication of the cells by tens of millions in several weeks, a dramatic increase over previous duplication methods. Historically, regulatory T-cells have been difficult to replicate.

The new technique will give patients a better chance of having a successful bone marrow or organ transplant, and will have profound implications for patients with autoimmune diseases such as lupus, type 1 diabetes, Crohn's disease and multiple sclerosis.

The use of the new replication technique has already shown promising effects in the treatment of acute graft-versus-host disease; a post-transplant condition in which T-cells from the donor's bone marrow recognizes a recipient's body as foreign, and tries to attack.

"When regulatory T-cells don't respond to inflammation quickly enough to suppress an immune system response, the patient's own immune response can do considerable harm after a transplant, injuring organs, joints and other tissues of the body," said Dr. Bruce Blazar, senior author of the study and Director of the Clinical and Translational Science Institute at the U of M.

Compounding the challenge is that humans have a limited supply of regulatory T-cells, Blazar said. So even if the immune system's cells respond appropriately, there may not be enough suppressor cells to stop errant reactions in time before the immune response causes widespread tissue damage.

Researchers felt that by developing a way to replicate the cells -- which have been historically challenging to coax into high rates of duplication -- they could increase transplantation success rates.

Between 30-40 percent of all related bone marrow transplant patients experience graft-versus-host disease, and between 10-30 percent of kidney transplants and 60-80 percent of liver transplant recipients experience acute rejection, according to the National Institutes of Health.

About the New Method

The immunology team, led by Blazar, developed a method to extract regulatory T-cells from blood and subsequently deliver the right combination of signals to make the cells replicate up to 50 million fold. Previous methods to duplicate these cells led to only 70-fold expansion at best.

The findings are published in the May 18 edition of Science Translational Medicine.

"The ability to deliver such large quantities of these cells to patients before they undergo transplantation significantly reduces the chances of graft versus host disease and rejection of a transplanted organ," Blazar said.

In animal models and in human clinical trials (where smaller doses of regulatory T cells were given to patients), Blazar's hypothesis came to fruition: Animals and patients became less likely to develop severe immune reactions that caused tissue damage.

The next step in Blazar's work is phase 1 human clinical testing headed by the U of M's Dr. John Wagner, a world renowned researcher who has been a leader in the field of blood and marrow transplantation. Wagner plans to lead a team of doctors who will administer increasing doses of regulatory T-cells before bone marrow transplants using Blazar's new expansion method.

"This is truly exciting and a major, major breakthrough with profound implications in the treatment of our patients," Wagner said. "If we can super charge patients' immune systems before we do a transplant, we hope to eliminate the chance of graft-versus-host disease or rejection of the transplanted organ. Furthermore, we hope to move these trials ahead quickly to treat autoimmune diseases which affect hundreds of thousands of people worldwide."

Alongside Drs. Blazar and Wagner, U of M assistant professor Dr. Keli Hippen, the lead investigator of the study, pushed this new technology forward.

Collaborators from the University of Pennsylvania provided the key cell lines that made the research possible. Penn scientists engineered artificial Antigen Presenting Cells (aAPCs) which massively expanded regulatory T-cells. The process by which they were replicated could be used to generate a master cell bank that could be used to treat a large number of patients, making therapy much more feasible and cost effective.

The study was funded by National Institutes of Health, the Leukemia and Lymphoma Society and the Childrens' Cancer Research Fund.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. L. Hippen, S. C. Merkel, D. K. Schirm, C. M. Sieben, D. Sumstad, D. M. Kadidlo, D. H. McKenna, J. S. Bromberg, B. L. Levine, J. L. Riley, C. H. June, P. Scheinberg, D. C. Douek, J. S. Miller, J. E. Wagner, B. R. Blazar. Massive ex Vivo Expansion of Human Natural Regulatory T Cells (Tregs) with Minimal Loss of in Vivo Functional Activity. Science Translational Medicine, 2011; 3 (83): 83ra41 DOI: 10.1126/scitranslmed.3001809

Cite This Page:

University of Minnesota. "New way to duplicate immunity boosting cells to unprecedented levels." ScienceDaily. ScienceDaily, 19 May 2011. <www.sciencedaily.com/releases/2011/05/110518141708.htm>.
University of Minnesota. (2011, May 19). New way to duplicate immunity boosting cells to unprecedented levels. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/05/110518141708.htm
University of Minnesota. "New way to duplicate immunity boosting cells to unprecedented levels." ScienceDaily. www.sciencedaily.com/releases/2011/05/110518141708.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins