Featured Research

from universities, journals, and other organizations

Hips take walking in stride, ankles put best foot forward in run

Date:
May 25, 2011
Source:
North Carolina State University
Summary:
In a first-of-its-kind study comparing human walking and running motions -- and whether the hips, knees or ankles are the most important power sources for these motions -- researchers show that the hips generate more of the power when people walk, but the ankles generate more of the power when humans run. Knees provide approximately one-fifth or less of walking or running power.

In a new study, researchers show that the hips generate more of the power when people walk, but the ankles generate more of the power when humans run.
Credit: iStockphoto/Mads Abildgaard

In a first-of-its-kind study comparing human walking and running motions -- and whether the hips, knees or ankles are the most important power sources for these motions -- researchers at North Carolina State University show that the hips generate more of the power when people walk, but the ankles generate more of the power when humans run. Knees provide approximately one-fifth or less of walking or running power.

The research could help inform the best ways of building assistive or prosthetic devices for humans, or constructing next-generation robotics, say NC State biomedical engineers Drs. Dominic Farris and Gregory Sawicki. The co-authors of a study on the mechanics of walking and running in the journal Interface, a Royal Society scientific journal, Sawicki and Farris are part of NC State's Human PoWeR (Physiology of Wearable Robotics) Lab.

A long history of previous studies have focused on the biomechanics of human locomotion from a whole-body or individual limbs perspective. But this study is the first to zoom in on the mechanical power generated by specific lower-limb joints in a single comprehensive study of walking and running across a range of speeds, Sawicki says.

The study shows that, overall, hips generate more power when people walk. That is, until humans get to the point at which they're speed walking -- walking so fast that it feels more comfortable to run -- at 2 meters per second. Hips generate 44 percent of the power when people walk at a rate of 2 meters per second, with ankles contributing 39 percent of the power.

When people start running at this 2-meter-per-second rate, the ankles really kick in, providing 47 percent of the power compared to 32 percent for the hips. Ankles continue to provide the most power of the three lower limb joints as running speeds increase, although the hips begin closing the distance at faster speeds.

"There seems to be a tradeoff in power generation from hips to ankles as you make the transition from walking to running," Sawicki says.

Both researchers are interested in how the study can help people who need assistance walking and running. Knowing which part of the lower limbs provide more power during the different activities can help engineers figure out how, depending on the person's speed and gait, mechanical power needs to be distributed.

"For example, assistive devices such as an exoskeleton or prosthesis may have motors near both the hip and ankle. If a person will be walking and then running, you'd need to redistribute energy from the hip to the ankle when the person makes that transition," Farris says.

Ten people walked and ran at various speeds on a specially designed treadmill in the study; a number of cameras captured their gait by tracking reflective markers attached to various parts of the participants' lower limbs while the treadmill captured data from the applied force.

The study examined walking and running on level ground in order to gauge the differences brought about by increased speed; walking and running on inclined ground is fundamentally different than walking and running on flat ground, the researchers say, and would likely skew the power generation results toward the hips and knees.

The joint Department of Biomedical Engineering is part of NC State's College of Engineering and the University of North Carolina-Chapel Hill's School of Medicine.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dominic James Farris and Gregory S. Sawicki, North Carolina State University. The mechanics and energetic of human walking and running: a joint level perspective. Interface, 2011

Cite This Page:

North Carolina State University. "Hips take walking in stride, ankles put best foot forward in run." ScienceDaily. ScienceDaily, 25 May 2011. <www.sciencedaily.com/releases/2011/05/110524191651.htm>.
North Carolina State University. (2011, May 25). Hips take walking in stride, ankles put best foot forward in run. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/05/110524191651.htm
North Carolina State University. "Hips take walking in stride, ankles put best foot forward in run." ScienceDaily. www.sciencedaily.com/releases/2011/05/110524191651.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins