Featured Research

from universities, journals, and other organizations

Key molecule for stem cell pluripotency discovered

Date:
May 27, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
Researchers have discovered what enables embryonic stem cells to differentiate into diverse cell types and thus to be pluripotent. This pluripotency depends on a molecule -- E-cadherin -- hitherto primarily known for its role in mediating cell-cell adhesion. If E-cadherin is absent, the stem cells lose their pluripotency. The molecule also plays a crucial role in the reprogramming of body cells into pluripotent stem cells.

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have discovered what enables embryonic stem cells to differentiate into diverse cell types and thus to be pluripotent. This pluripotency depends on a specific molecule -- E-cadherin -- hitherto primarily known for its role in mediating cell-cell adhesion as a kind of "intracellular glue." If E-cadherin is absent, the stem cells lose their pluripotency. The molecule also plays a crucial role in the reprogramming of somatic cells (body cells) into pluripotent stem cells.

Related Articles


Dr. Daniel Besser, Prof. Walter Birchmeier and Torben Redmer from the MDC, a member of the Helmholtz Association, used mouse embryonic fibroblasts (MEFs) in their stem cell experiments. In a first step they showed that the pluripotency of these stem cells is directly associated with the cell-adhesion molecule E-cadherin. If E-cadherin is absent, the stem cells lose their pluripotency. In a second step the researchers investigated what happens when somatic cells that normally neither have E-cadherin nor are pluripotent are reprogrammed into a pluripotent stem cell state. In this reprogramming technique, somatic cells are converted into induced pluripotent stem cells (iPSCs). This new technique may help researchers avoid the controversies that come with the use of human embryos to produce human embryonic stem cells for research purposes.

The MDC researchers found that in contrast to the original cells, the new pluripotent cells derived from mouse connective tissue contained E-cadherin. "Thus, we have double proof that E-cadherin is directly associated with stem-cell pluripotency. E-Cadherin is necessary for maintaining pluripotent stem cells and also for inducing the pluripotent state in the reprogramming of somatic cells," Dr. Besser said. "If E-cadherin is absent, somatic cells cannot be reprogrammed into viable pluripotent cells." In addition, E-Cadherin can replace OCT 4, one of the signaling molecules until now considered indispensable for reprogramming.

Next, the MDC researchers want to find out to what extent E-cadherin also regulates human embryonic stem cells. "Understanding the molecular relationships is essential for using human somatic cells to develop stem cell therapy for diseases such as heart attack, Alzheimer's or Parkinson's disease or diabetes," Dr. Besser said.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Torben Redmer, Sebastian Diecke, Tamara Grigoryan, Angel Quiroga-Negreira, Walter Birchmeier, Daniel Besser. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO reports, 2011; DOI: 10.1038/embor.2011.88

Cite This Page:

Helmholtz Association of German Research Centres. "Key molecule for stem cell pluripotency discovered." ScienceDaily. ScienceDaily, 27 May 2011. <www.sciencedaily.com/releases/2011/05/110527101506.htm>.
Helmholtz Association of German Research Centres. (2011, May 27). Key molecule for stem cell pluripotency discovered. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2011/05/110527101506.htm
Helmholtz Association of German Research Centres. "Key molecule for stem cell pluripotency discovered." ScienceDaily. www.sciencedaily.com/releases/2011/05/110527101506.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins