Featured Research

from universities, journals, and other organizations

Gamma-ray flash came from star being eaten by massive black hole

June 16, 2011
University of California - Berkeley
A bright flash of gamma rays observed March 28 by the Swift satellite signaled the death of a star falling into a massive black hole, say a team of astronomers. According to their model, a star the mass of our sun got too close and was ripped apart; one-tenth of the mass was emitted as X-rays and gamma rays, much of it in a collimated jet aimed at Earth.

Images from Swift's Ultraviolet/Optical (white, purple) and X-ray telescopes (yellow and red) were combined in this view of the gamma-ray flare, catalogued as GRB 110328A. The blast was detected only in X-rays, which were collected over a 3.4-hour period on March 28, 2011.
Credit: NASA/Swift/Stefan Immler

A bright flash of gamma rays observed March 28 by the Swift satellite may have been the death rattle of a star falling into a massive black hole and being ripped apart, according to a team of astronomers led by the University of California, Berkeley.

When the Swift Gamma Burst Mission spacecraft first detected the flash within the constellation Draco, astronomers thought it was a gamma-ray burst from a collapsing star. On March 31, however, UC Berkeley's Joshua Bloom sent out an email circular suggesting that it wasn't a typical gamma-ray burst at all, but a high-energy jet produced as a star about the size of our sun was shredded by a black hole a million times more massive.

Careful analysis of the Swift data and subsequent observations by the Hubble Space Telescope and the Chandra X-ray Observatory confirmed Bloom's initial insight. The details are published online on June 16 in Science Express, a rapid publication arm of the journal Science.

"This is truly different from any explosive event we have seen before," Bloom said.

What made this gamma-ray flare, called Sw 1644+57, stand out from a typical burst were its long duration and the fact that it appeared to come from the center of a galaxy nearly 4 billion light years away. Since most, if not all, galaxies are thought to contain a massive black hole at the center, a long-duration burst could conceivably come from the relatively slow tidal disruption of an infalling star, the astronomers said.

"This burst produced a tremendous amount of energy over a fairly long period of time, and the event is still going on more than two and a half months later," said Bloom, an associate professor of astronomy at UC Berkeley. "That's because as the black hole rips the star apart, the mass swirls around like water going down a drain, and this swirling process releases a lot of energy."

Bloom and his colleagues propose in their Science Express paper that some 10 percent of the infalling star's mass is turned into energy and irradiated as X-rays from the swirling accretion disk or as X-rays and higher energy gamma rays from a relativistic jet that punches out along the rotation axis. Earth just happened to be in the eye of the gamma-ray beam.

Bloom draws an analogy with a quasar, which is a distant galaxy that emits bright, high-energy light because of the massive black hole at its center gobbling up stars and sending out a jet of X-rays along its rotation axis. Observed from an angle, these bright emissions are called active galactic nuclei, but when observed down the axis of the jet, they're referred to as blazars.

"We argue that this must be jetted material and we're looking down the barrel," he said. "Jetting is a common phenomenon when you have accretion disks, and black holes actually prefer to make jets."

Looking back at previous observations of this region of the cosmos, Bloom and his team could find no evidence of X-ray or gamma-ray emissions, leading them to conclude that this is a "one-off event," Bloom said.

"Here, you have a black hole sitting quiescently, not gobbling up matter, and all of a sudden something sets it off," Bloom said. "This could happen in our own galaxy, where a black hole sits at the center living in quiescence, and occasionally burbles or hiccups as it swallows a little bit of gas. From a distance, it would appear dormant, until a star randomly wanders too close and is shredded."

Probable tidal disruptions of a star by a massive black hole have previously been seen at X-ray, ultraviolet and optical wavelengths, but never before at gamma-ray energies. Such random events, especially looking down the barrel of a jet, are incredibly rare, "probably once in 100 million years in any given galaxy," said Bloom. "I would be surprised if we saw another one of these anywhere in the sky in the next decade."

The astronomers suspect that the gamma-ray emissions began March 24 or 25 in the uncatalogued galaxy at a redshift of 0.3534, putting it at a distance of about 3.8 billion light years. Bloom and his colleagues estimate that the emissions will fade over the next year.

"We think this event was detected around the time it was as bright as it will ever be, and if it's really a star being ripped apart by a massive black hole, we predict that it will never happen again in this galaxy," he said.

Bloom's colleagues include UC Berkeley theoretical physicist Elliot Quataert, who models the production of jets from accretion disks, and UC Berkeley astronomers S. Bradley Cenko, Daniel A. Perley, Nathaniel R. Butler, Linda E. Strubbe, Antonino Cucchiara, Geoffrey C. Bower and Adam N. Morgan; Dimitrios Giannios and Brian D. Metzger of Princeton University; Andrew J. Levan of the University of Warwick, Coventry, United Kingdom; Nial R. Tanvir, Paul T. O' Brien, Andrew R. King and Sergei Nayakshin of the University of Leicester in the U.K.; Fabio De Colle, Enrico Ramirez-Ruiz and James Guillochon of UC Santa Cruz; William H. Lee of the Universidad Nacional Autonoma de Mιxico in Mexico City; Andrew S. Fruchter of the Space Telescope Science Institute in Baltimore, Md.; and Alexander J. van der Horst of the Universities Space Research Association in Huntsville, Ala.

Levan is first author of the companion Science Express paper, and leader of the Chandra and Hubble Space Telescope observation team.

Bloom and his laboratory are supported by grants from NASA and the National Science Foundation.

Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.

Journal Reference:

  1. Joshua S. Bloom, Dimitrios Giannios, Brian D. Metzger, S. Bradley Cenko, Daniel A. Perley, Nathaniel R. Butler, Nial R. Tanvir, Andrew J. Levan, Paul T. O' Brien, Linda E. Strubbe, Fabio De Colle, Enrico Ramirez-Ruiz, William H. Lee, Sergei Nayakshin, Eliot Quataert, Andrew R. King, Antonino Cucchiara, James Guillochon, Geoffrey C. Bower, Andrew S. Fruchter, Adam N. Morgan, Alexander J. Van Der Horst. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science, 16 June 2011 DOI: 10.1126/science.1207150

Cite This Page:

University of California - Berkeley. "Gamma-ray flash came from star being eaten by massive black hole." ScienceDaily. ScienceDaily, 16 June 2011. <www.sciencedaily.com/releases/2011/06/110616142709.htm>.
University of California - Berkeley. (2011, June 16). Gamma-ray flash came from star being eaten by massive black hole. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/06/110616142709.htm
University of California - Berkeley. "Gamma-ray flash came from star being eaten by massive black hole." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616142709.htm (accessed July 29, 2014).

Share This

More Space & Time News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com


NASA (July 25, 2014) — NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) — Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) — One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins