Featured Research

from universities, journals, and other organizations

How dense is a cell? Combining ancient principle with new technology, researchers devise new way to answer question

Date:
June 22, 2011
Source:
Massachusetts Institute of Technology
Summary:
Scientists have developed a way to measure the density of a single cell. The new method involves measuring the buoyant mass of each cell in two fluids of different densities. Measuring cell density could allow researchers to gain biophysical insight into fundamental cellular processes such as adaptations for survival, and might also be useful for identifying diseased cells.

MIT researchers designed this tiny microfluidic chip that can measure the mass and density of single cells.
Credit: Photo courtesy of the Manalis Lab

More than 2,000 years after Archimedes found a way to determine the density of a king's crown by measuring its mass in fluids, MIT scientists have used a similar principle to solve an equally vexing puzzle -- how to measure the density of a single cell.

Related Articles


"Density is such a fundamental, basic property of everything," says William Grover, a research associate in MIT's Department of Biological Engineering. "Every cell in your body has a density, and if you can measure it accurately enough, it opens a whole new window on the biology of that cell."

The new method, described in the Proceedings of the National Academy of Sciences the week of June 20, involves measuring the buoyant mass of each cell in two fluids of different densities. Just as measuring the crown's density helped Archimedes determine whether it was made of pure gold, measuring cell density could allow researchers to gain biophysical insight into fundamental cellular processes such as adaptations for survival, and might also be useful for identifying diseased cells, according to the authors.

Grover and recent MIT PhD recipient Andrea Bryan are lead authors of the paper. Both work in the lab of Scott Manalis, a professor of biological engineering, member of the David H. Koch Institute for Integrative Cancer Research and senior author of the paper.

Going with the flow

Measuring the density of living cells is tricky because it requires a tool that can weigh cells in their native fluid environment, to keep them alive, and a method to measure each cell in two different fluids.

In 2007, Manalis and his students developed the first technique to measure the buoyant mass of single living cells. Their device, known as a suspended microchannel resonator, pumps cells, in fluid, through a microchannel that runs across a tiny silicon cantilever, or diving-board structure. That cantilever vibrates within a vacuum; when a cell flows through the channel, the frequency of the cantilever's vibration changes. The cell's buoyant mass can be calculated from the change in frequency.

To adapt the system to measure density, the researchers needed to flow each cell through the channel twice, each time in a different fluid. A cell's buoyant mass (its mass as it floats in fluid) depends on its absolute mass and volume, so by measuring two different buoyant masses for a cell, its mass, volume and density can be calculated.

The new device rapidly exchanges the fluids in the channel without harming the cell, and the entire measurement process for one cell takes as little as five seconds.

David Weitz, professor of physics at Harvard University, says the new technique is a clever way of measuring cell density, and opens up many new avenues of research. "The very interesting thing they show is that density seems to have a more sensitive change than some of the more standard measurements. Why is that? I don't know. But the fact that I don't know means it's interesting," he says.

Changes in density

The researchers tested their system with several types of cells, including red blood cells and leukemia cells. In the leukemia study, the researchers treated the cells with an antibiotic called staurosporine, then measured their density less than an hour later. Even in that short time, a change in density was already apparent. (The cells grew denser as they started to die.) The treated leukemia cells increased their density by only about 1 percent, a change that would be difficult to detect without a highly sensitive device such as this one. Because of that rapid response and sensitivity, this method could become a good way to screen potential cancer drugs.

"It was really easy, by the density measurement, to identify cells that had responded to the drug. If we had looked at mass alone, or volume alone, we never would have seen that effect," Bryan says.

The researchers also demonstrated that malaria-infected red blood cells lose density as their infection progresses. This density loss was already known, but this is the first time it has been observed in single cells.

Being able to detect changes in red-blood-cell density could also offer a new way to test athletes who try to cheat by "doping" their blood -- that is, by removing their own blood and storing it until just before their competition, when it is transfused back into the bloodstream. This boosts the number of red blood cells, potentially enhancing athletic performance.

Storing blood can alter the blood's physical characteristics, and if those include changes in density, this technique may be able to detect blood doping, Grover says.

Researchers in Manalis' lab are now investigating the densities of other types of cells, and are starting to work on measuring single cells as they grow over time -- specifically cancer cells, which are characterized by uncontrolled growth.

"Understanding how density of individual cancer cells relates to malignant progression could provide fundamental insights into the underlying cellular processes, as well as lead to clinical strategies for treating patients in situations where molecular markers don't yet exist or are difficult to measure due to limited sample volumes," Manalis says.

Other authors on the paper are MIT research scientist Monica Diez-Silva; Subra Suresh, former dean of the MIT School of Engineering; and John Higgins of Massachusetts General Hospital and Harvard Medical School.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, S. R. Manalis. Measuring single-cell density. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1104651108

Cite This Page:

Massachusetts Institute of Technology. "How dense is a cell? Combining ancient principle with new technology, researchers devise new way to answer question." ScienceDaily. ScienceDaily, 22 June 2011. <www.sciencedaily.com/releases/2011/06/110621114312.htm>.
Massachusetts Institute of Technology. (2011, June 22). How dense is a cell? Combining ancient principle with new technology, researchers devise new way to answer question. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/06/110621114312.htm
Massachusetts Institute of Technology. "How dense is a cell? Combining ancient principle with new technology, researchers devise new way to answer question." ScienceDaily. www.sciencedaily.com/releases/2011/06/110621114312.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins