Featured Research

from universities, journals, and other organizations

Brain stimulation preserves a memory when other memories interfere

Date:
July 8, 2011
Source:
Beth Israel Deaconess Medical Center
Summary:
A new study suggests that specific brain areas actively orchestrate competition between memories, and that by disrupting targeted brain areas through transcranial magnetic stimulation, you can preserve memory -- and prevent forgetting.

As any student who's had to study for multiple exams can tell you, trying to learn two different sets of facts one after another is challenging. As you study for the physics exam, almost inevitably some of the information for the history exam is forgotten. It's been widely believed that this interference between memories develops because the brain simply doesn't have the capacity necessary to process both memories in quick succession. But is this truly the case?

Related Articles


A new study by researchers at Beth Israel Deaconess Medical Center (BIDMC) suggests that specific brain areas actively orchestrate competition between memories, and that by disrupting targeted brain areas through transcranial magnetic stimulation (TMS), you can preserve memory -- and prevent forgetting.

The findings are described in the June 26 Advance Online issue of Nature Neuroscience.

"For the last 100 years, it has been appreciated that trying to learn facts and skills in quick succession can be a frustrating exercise," explains Edwin Robertson, MD, DPhil, an Associate Professor of Neurology at Harvard Medical School and BIDMC. "Because no sooner has a new memory been acquired than its retention is jeopardized by learning another fact or skill."

Robertson, together with BIDMC neurologist and coauthor Daniel Cohen, MD, studied a group of 120 college-age students who performed two concurrent memory tests. The first involved a finger-tapping motor skills task, the second a declarative memory task in which participants memorized a series of words. (Half of the group performed the tasks in this order, while a second group learned these same two tasks in reverse order.)

"The study subjects performed these back-to-back exercises in the morning," he explains. "They then returned 12 hours later and re-performed the tests. As predicted, their recall for either the word list or the motor-skill task had decreased when they were re-tested."

In the second part of the study, Robertson and Cohen administered TMS following the initial testing. TMS is a noninvasive technique that uses a magnetic simulator to generate a magnetic field that can create a flow of current in the brain.

"Because brain cells communicate through a process of chemical and electrical signals, applying a mild electrical current to the brain can influence the signals," Robertson explains. In this case, the researchers targeted two specific brain regions, the dorsolateral prefrontal cortex and the primary motor cortex. They discovered that by applying TMS to specific brain areas, they were able to reduce the interference and competition between the motor skill and word-list tasks and both memories remained intact.

"This elegant study provides fundamental new insights into the way our brain copes with the challenge of learning multiple skills and making multiple memories," says Alvaro Pascual-Leone, MD, PhD, Director of the Berenson-Allen Center for Noninvasive Brain Stimulation at BIDMC. "Specific brain structures seem to carefully balance how much we retain and how much we forget. Learning and remembering is a dynamic process and our brain devotes resources to keep the process flexible. By better understanding this process, we may be able to find novel approaches to help enhance learning and treat patients with memory problems and learning disabilities."

"Our observations suggest that distinct mechanisms support the communication between different types of memory processing," adds Robertson. "This provides a more dynamic and flexible account of memory organization than was previously believed. We've demonstrated that the interference between memories is actively mediated by brain areas and so may serve an important function that has previously been overlooked."

This study was supported by grants from the National Institutes of Health (NIH) and the National Science Foundation.


Story Source:

The above story is based on materials provided by Beth Israel Deaconess Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel A Cohen, Edwin M Robertson. Preventing interference between different memory tasks. Nature Neuroscience, 2011; DOI: 10.1038/nn.2840

Cite This Page:

Beth Israel Deaconess Medical Center. "Brain stimulation preserves a memory when other memories interfere." ScienceDaily. ScienceDaily, 8 July 2011. <www.sciencedaily.com/releases/2011/07/110708124542.htm>.
Beth Israel Deaconess Medical Center. (2011, July 8). Brain stimulation preserves a memory when other memories interfere. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/07/110708124542.htm
Beth Israel Deaconess Medical Center. "Brain stimulation preserves a memory when other memories interfere." ScienceDaily. www.sciencedaily.com/releases/2011/07/110708124542.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins