Science News
from research organizations

An advance toward ultra-portable electronic devices

Date:
July 21, 2011
Source:
American Chemical Society
Summary:
Scientists are reporting a key advance toward the long-awaited era of "single-molecule electronics," when common electronic circuits in computers, smart phones, audio players, and other devices may shrink to the size of a grain of sand. The breakthrough is a method for creating and attaching the tiny wires that will connect molecular components, reports a new study.
Share:
       
FULL STORY

Scientists are reporting a key advance toward the long-awaited era of "single-molecule electronics," when common electronic circuits in computers, smart phones, audio players, and other devices may shrink to the size of a grain of sand. The breakthrough is a method for creating and attaching the tiny wires that will connect molecular components, reports a new study in the Journal of the American Chemical Society.

Yuji Okawa and colleagues write that the "key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules." That challenge has stymied many researchers, who have struggled to produce wires small enough to use in molecular circuits.

The scientists now demonstrate a method that uses the tip of a scanning tunneling microscope to jump-start the formation of a molecule chain. The chain or "wire" spontaneously chemically bonds with other molecular components in the circuit under construction, a process that Okawa and colleagues dub "chemical soldering." The wiring method can be used to connect molecular switches, memory bits, and transistors. The scientists say their technique "will enable us to develop cheaper, higher-performance, and more ecological alternatives to conventional silicon-based devices."

The authors acknowledge funding from the Japan Society for the Promotion of Science.


Story Source:

The above post is reprinted from materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuji Okawa, Swapan K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, Masakazu Aono. Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry. Journal of the American Chemical Society, 2011; 133 (21): 8227 DOI: 10.1021/ja111673x

Cite This Page:

American Chemical Society. "An advance toward ultra-portable electronic devices." ScienceDaily. ScienceDaily, 21 July 2011. <www.sciencedaily.com/releases/2011/07/110720142348.htm>.
American Chemical Society. (2011, July 21). An advance toward ultra-portable electronic devices. ScienceDaily. Retrieved August 28, 2015 from www.sciencedaily.com/releases/2011/07/110720142348.htm
American Chemical Society. "An advance toward ultra-portable electronic devices." ScienceDaily. www.sciencedaily.com/releases/2011/07/110720142348.htm (accessed August 28, 2015).

Share This Page: