Featured Research

from universities, journals, and other organizations

Getting a grip on grasping

Date:
July 22, 2011
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Quickly grabbing a cup of coffee is an everyday action for most of us. For people with severe paralysis however, this task is unfeasible – yet not “unthinkable”. Because of this, interfaces between the brain and a computer can in principle detect these “thoughts” and transform them into steering commands. Scientists in Germany now have found a way to distinguish between different types of grasping on the basis of the accompanying brain activity.

Quickly grabbing a cup of coffee is an everyday action for most of us. For people with severe paralysis however, this task is unfeasible -- yet not "unthinkable." Because of this, interfaces between the brain and a computer can in principle detect these "thoughts" and transform them into steering commands. Scientists from Freiburg now have found a way to distinguish between different types of grasping on the basis of the accompanying brain activity.

In the current issue of the journal "NeuroImage," Tobias Pistohl and colleagues from the Bernstein Center Freiburg and the University Medical Centre describe how they succeeded in differentiating the brain activity associated with a precise grip and a grip of the whole hand. Ultimately, the scientists aim to develop a neuroprosthesis: a device that receives commands directly from the brain, and which can be used by paralysed people to control the arm of a robot -- or even their own limbs.

One big problem about arm movements had been so far unresolved. In our daily lives, it is important to handle different objects in different ways, for example a feather and a brick. The researchers from Freiburg now found aspects in the brain's activity that distinguish a precise grip from one with the whole hand.

To this end, Pistohl and his collaborators made use of signals that are measured on the surface of the brain. The big advantage of this approach is that no electrodes have to be implanted directly into this delicate organ. At the same time, the obtained signals are much more precise than those that can be measured on the skull's surface.

The scientists conducted a simple experiment with patients that were not paralysed, but had electrodes implanted into their skull for medical reasons. The task was to grab a cup, either with a precise grip formed by the thumb and the index finger, or with their whole hand. At the same time, a computer recorded the electrical changes at the electrodes. And in fact, the scientists were able to find signals in the brain's activity that differed, depending on the type of grasp. A computer was able to attribute these signals to the different hand positions with great reliability. Now, the next challenge will be to identify these kinds of signals in paralysed patients as well -- with the aim of eventually putting a more independent life back within their reach.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tobias Pistohl, Andreas Schulze-Bonhage, Ad Aertsen, Carsten Mehring, Tonio Ball. Decoding natural grasp types from human ECoG. NeuroImage, 2011; DOI: 10.1016/j.neuroimage.2011.06.084

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Getting a grip on grasping." ScienceDaily. ScienceDaily, 22 July 2011. <www.sciencedaily.com/releases/2011/07/110722130248.htm>.
Albert-Ludwigs-Universität Freiburg. (2011, July 22). Getting a grip on grasping. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/07/110722130248.htm
Albert-Ludwigs-Universität Freiburg. "Getting a grip on grasping." ScienceDaily. www.sciencedaily.com/releases/2011/07/110722130248.htm (accessed April 23, 2014).

Share This



More Mind & Brain News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
Do We Get Nicer With Age?

Do We Get Nicer With Age?

Newsy (Apr. 22, 2014) — A recent report claims personality can change over time as we age, and usually that means becoming nicer and more emotionally stable. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) — In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Sorry, Guys, Only Women Can Make Their Voices Sound Sexier

Sorry, Guys, Only Women Can Make Their Voices Sound Sexier

Newsy (Apr. 21, 2014) — According to researchers at Albright College, women have the ability to make their voices sound sexier, but men don't. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins