Featured Research

from universities, journals, and other organizations

DNA strands that select nanotubes are first step to a practical 'quantum wire'

Date:
August 4, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
DNA, a molecule famous for storing the genetic blueprints for all living things, can do other things as well. In a new paper, researchers describe how tailored single strands of DNA can be used to purify the highly desired "armchair" form of carbon nanotubes. Armchair-form single wall carbon nanotubes are needed to make "quantum wires" for low-loss, long distance electricity transmission and wiring.

Wrapped up in their work: this molecular model shows a single-strand DNA molecule (yellow ribbon) coiled around an "armchair" carbon nanotube.
Credit: Roxbury, Jagota/NIST

DNA, a molecule famous for storing the genetic blueprints for all living things, can do other things as well. In a new paper, researchers at the National Institute of Standards and Technology (NIST) describe how tailored single strands of DNA can be used to purify the highly desired "armchair" form of carbon nanotubes. Armchair-form single wall carbon nanotubes are needed to make "quantum wires" for low-loss, long distance electricity transmission and wiring.

Single-wall carbon nanotubes are usually about a nanometer in diameter, but they can be millions of nanometers in length. It's as if you took a one-atom-thick sheet of carbon atoms, arranged in a hexagonal pattern, and curled it into a cylinder, like rolling up a piece of chicken wire. If you've tried the latter, you know that there are many possibilities, depending on how carefully you match up the edges, from neat, perfectly matched rows of hexagons ringing the cylinder, to rows that wrap in spirals at various angles -- "chiralities" in chemist-speak.

Chirality plays an important role in nanotube properties. Most behave like semiconductors, but a few are metals. One special chiral form -- the so-called "armchair carbon nanotube"* -- behaves like a pure metal and is the ideal quantum wire, according to NIST researcher Xiaomin Tu.

Armchair carbon nanotubes could revolutionize electric power systems, large and small, Tu says. Wires made from them are predicted to conduct electricity 10 times better than copper, with far less loss, at a sixth the weight. But researchers face two obstacles: producing totally pure starting samples of armchair nanotubes, and "cloning" them for mass production. The first challenge, as the authors note, has been "an elusive goal."

Separating one particular chirality of nanotube from all others starts with coating them to get them to disperse in solution, as, left to themselves, they'll clump together in a dark mass. A variety of materials have been used as dispersants, including polymers, proteins and DNA. The NIST trick is to select a DNA strand that has a particular affinity for the desired type of nanotube. In earlier work, team leader Ming Zheng and colleagues demonstrated DNA strands that could select for one of the semiconductor forms of carbon nanotubes, an easier target. In this new paper, the group describes how they methodically stepped through simple mutations of the semiconductor-friendly DNA to "evolve" a pattern that preferred the metallic armchair nanotubes instead.

"We believe that what happens is that, with the right nanotube, the DNA wraps helically around the tube," explains Constantine Khripin, "and the DNA nucleotide bases can connect with each other in a way similar to how they bond in double-stranded DNA." According to Zheng, "The DNA forms this tight barrel around the nanotube. I love this idea because it's kind of a lock and key. The armchair nanotube is a key that fits inside this DNA structure -- you have this kind of molecular recognition."

Once the target nanotubes are enveloped with the DNA, standard chemistry techniques such as chromatography can be used to separate them from the mix with high efficiency.

"Now that we have these pure nanotube samples," says team member Angela Hight Walker, "we can probe the underlying physics of these materials to further understand their unique properties. As an example, some optical features once thought to be indicative of metallic carbon nanotubes are not present in these armchair samples."

* From the distinctive shape of the edge of the cylinder.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal References:

  1. Xiaomin Tu, Angela R. Hight Walker, Constantine Y. Khripin, Ming Zheng. Evolution of DNA Sequences Toward Recognition of Metallic Armchair Carbon Nanotubes. Journal of the American Chemical Society, 2011; 110728080027017 DOI: 10.1021/ja205407q
  2. Xiaomin Tu, Suresh Manohar, Anand Jagota, Ming Zheng. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature, 2009; 460 (7252): 250 DOI: 10.1038/nature08116

Cite This Page:

National Institute of Standards and Technology (NIST). "DNA strands that select nanotubes are first step to a practical 'quantum wire'." ScienceDaily. ScienceDaily, 4 August 2011. <www.sciencedaily.com/releases/2011/08/110803102903.htm>.
National Institute of Standards and Technology (NIST). (2011, August 4). DNA strands that select nanotubes are first step to a practical 'quantum wire'. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/08/110803102903.htm
National Institute of Standards and Technology (NIST). "DNA strands that select nanotubes are first step to a practical 'quantum wire'." ScienceDaily. www.sciencedaily.com/releases/2011/08/110803102903.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins