Featured Research

from universities, journals, and other organizations

Diamond’s quantum memory

Date:
August 17, 2011
Source:
Vienna University of Technology, TU Vienna
Summary:
Two completely different quantum systems have been successfully joined. This should pave the way to feasible quantum-computer microchips.

Johannes Majer (bottom) and members of his team: Robert Amsüss, Tobias Nöbauer, Stefan Putz (left to right).
Credit: Image courtesy of Vienna University of Technology, TU Vienna

Two completely different quantum systems were successfully joined at Vienna University of Technology (TU Vienna). This should pave the way to feasible quantum-computer microchips.

For years, quantum computers have been the holy grail of quantum technology. When a normal computer has to solve a number of problems, it can only execute them one after the other. In contrast, a quantum computer could occupy several different states at the same time -- and that way it could try out different possible solutions of a problem at once, finding the correct answer much faster than a normal computer ever could.

Diamonds could now bring physicists one important step closer to the quantum computer. At Vienna University of Technology, microwaves have now been coupled to the quantum states of a diamond. The results of this research project were now published in the scientific journal Physical Review Letters.

Different Quantum Technologies in One Chip

For a long time, scientists have been looking for suitable building blocks to construct a quantum computer -- but without much success. Several ideas for systems which can store quantum mechanical information have been put forward, but quantum information is usually very fragile and easily destroyed. A component of a computer has to meet different criteria. It should be able to switch its state very rapidly, and it has to conserve its quantum state for a sufficient amount of time, so that calculations can be carried out. "There is no single quantum system which meets all the requirements," Johannes Majer says. He and his team coupled two completely different kinds of quantum systems, in order to use the advantages of both sides: Microwaves and Diamonds.

Photons and Diamonds

Our usual computers have a processor and a memory. The processor carries out fast calculations, the memory is supposed to remember the results for a long time. The relation between the two different quantum systems unified on one quantum chip at TU Vienna is quite similar: fast manipulations are possible due to a so called microwave resonator. Its quantum state is defined by photons in the microwave regime. This microwave resonator is coupled to a thin layer of diamond, in which quantum states can be stored.

Desirable Flaws

For jewellery, diamonds are supposed to be pure and flawless, but for quantum experiments, the opposite is required. Here, flaws in the diamond are desirable. When nitrogen atoms slip into the regular carbon structure of the diamond, the diamond becomes almost black, but it gains the ability to store quantum states.

"We could show that in our quantum chip, quantum states can actually be transferred between the microwaves and the nitrogen-centers in the diamond," Robert Amsüss (TU Vienna) explains. The more nitrogen atoms take part in this transfer of quantum information, the more stable the diamonds "memory" becomes. Surprisingly, it turned out that also the angular momentum of the atomic nuclei can store quantum information. "This could be the first step towards a nuclear memory device," Johannes Majer suggests.

But first, the diamond quantum chip in its present form should be optimized. All the necessary parts are now there, creating the opportunity for reliable operations.


Story Source:

The above story is based on materials provided by Vienna University of Technology, TU Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer. Cavity QED with Magnetically Coupled Collective Spin States. Physical Review Letters, 2011; 107 (6) DOI: 10.1103/PhysRevLett.107.060502

Cite This Page:

Vienna University of Technology, TU Vienna. "Diamond’s quantum memory." ScienceDaily. ScienceDaily, 17 August 2011. <www.sciencedaily.com/releases/2011/08/110810085459.htm>.
Vienna University of Technology, TU Vienna. (2011, August 17). Diamond’s quantum memory. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2011/08/110810085459.htm
Vienna University of Technology, TU Vienna. "Diamond’s quantum memory." ScienceDaily. www.sciencedaily.com/releases/2011/08/110810085459.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com
Rate Hike Worries Down on Inflation Data

Rate Hike Worries Down on Inflation Data

Reuters - Business Video Online (Oct. 22, 2014) — Inflation remains well under control according to the latest consumer price index, giving the Federal Reserve more room to keep interest rates low for awhile. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins