Featured Research

from universities, journals, and other organizations

Cells derived from pluripotent stem cells are developmentally immature

Date:
August 18, 2011
Source:
University of California - Los Angeles Health Sciences
Summary:
Stem cell researchers have discovered that three types of cells derived from human embryonic stem cells and induced pluripotent stem cells are similar to each other, but are much more developmentally immature than previously thought when compared to those same cell types taken directly from human tissue.

Stem cell researchers at UCLA have discovered that three types of cells derived from human embryonic stem cells and induced pluripotent stem cells are similar to each other, but are much more developmentally immature than previously thought when compared to those same cell types taken directly from human tissue.

The researchers, from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, found that the progeny of the human embryonic stem cells and induced pluripotent stem cells (iPS) were more similar to cells found within the first two months of fetal development than anything later. This could have implications both clinically and for disease modeling, said William Lowry, senior author of the study and an assistant professor of molecular, cell and developmental biology in the Life Sciences.

The two-year study was published August 17 in the peer-reviewed journal Cell Research.

"Once we found that the human embryonic stem cell- and the iPS-derived progeny were similar, we wanted to understand how similar the progeny were to the same cells taken directly from human tissue," Lowry said. "What we found, looking at gene expression, was that the cells we derived were similar to cells found in early fetal development and were functionally much more immature than cells taken from human tissue. This finding may lead to exciting new ways to study early human development, but it also may present a challenge for transplantation, because the cells you end up with are not something that's indicative of a cell you'd find in an adult or even in a newborn baby."

There might also be challenges in disease modeling, unless you're modeling diseases that occur within the first two months of development, Lowry said.

Employing the most commonly used methods for deriving cells from embryonic stem cells and iPS cells, Lowry and his team differentiated these human pluripotent stem cells into neural progenitor cells, which create neurons and glia, hepatocytes, the main tissue found in the liver, and fibroblasts, common to the skin. They selected those cell types because they are easy to identify and are among the most commonly differentiated cells made from pluripotent stem cells. They also represent cell types found in the three germ layers, the endoderm, mesoderm and ectoderm, where the first cell fate decisions are made, Lowry said.

The progeny of the human pluripotent stem cells were compared to each other using their gene expression patterns, functionality and appearance. There was essentially little or no difference between them, Lowry said. Then the work began to compare them to equivalent cell types found in humans.

"One important reason to do this is to ensure that the cells we are creating in the Petri dish and potentially using for transplantation are truly analogous to the cells originally found in humans," said Michaela Patterson, first author of the study and a graduate student researcher. "Ideally, they should be a similar as possible."

What the team found was that while the progeny were alike, they bore striking differences from the same cells found in humans when analyzing their gene expression. A significant number of genes, about 100, were differentially expressed in the cell types made from pluripotent stem cells, Lowry said.

About half of those differentially expressed genes are normally thought to be strictly expressed in pluripotent stem cells, which have the potential to differentiate into any cell of the three germ layers. Those genes had not been turned off even after the cell had differentiated into either a neural progenitor cell, hepatocyte or a fibroblast, Patterson said.

"Previously, we assumed that all pluripotency genes get shut off right away, after the fetus begins developing," Patterson said. "We found that this is not the case, and in fact some of these genes remain expressed."

The differences in gene expression could be problematic, Lowry said, because some of these same differentially expressed genes in the progeny are genes that are expressed during cancer development. Also worrisome was their developmental maturity -- would they work correctly when transplanted into humans? As part of their study, the team left the differentiating cells in culture about a month longer to see if they would further mature, and there was some modest but statistically significant maturation. However, genetic discrepancies remained.

These discrepancies could be critical, Patterson said, particularly in the hepatocytes. During fetal development, these cells express proteins that aid the metabolism of the fetus, a role they don't play later in adults.

"The roles these cells play in the fetus and the adult are inherently different," she said. "It may be that the progeny, if transplanted into a human, would mature to the same levels as those found in the adult liver. We don't know."

The team then compared the progeny to cells from humans that were closer to the progeny's developmental maturity and found that the two types of cells were indeed becoming more similar in gene expression and functionality, Lowry said.

The UCLA team is not the first to suggest that the progeny of human pluripotent stem cells reflect an early developmental immaturity. However, these data put a more precise window on their developmental age.

Going forward, Lowry and his team are going to study the 100 genes being differentially expressed in the progeny to see if manipulating some or all of them results in the maturation of the cells.

"These findings provide support for the idea that human pluripotent stem cells can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical applications of their derivatives," the study states.

The study was funded in part by a seed grant and training grants from the California Institute of Regenerative Medicine, the Basil O'Connor Started Scholar Award and the Fuller Foundation.


Story Source:

The above story is based on materials provided by University of California - Los Angeles Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michaela Patterson, David N. Chan, Iris Ha, Dana Case, Yongyan Cui, Ben Van Handel, Hanna KA Mikkola, William E Lowry. Defining the nature of human pluripotent stem cell progeny. Cell Research, 2011; DOI: 10.1038/cr.2011.133

Cite This Page:

University of California - Los Angeles Health Sciences. "Cells derived from pluripotent stem cells are developmentally immature." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110817092227.htm>.
University of California - Los Angeles Health Sciences. (2011, August 18). Cells derived from pluripotent stem cells are developmentally immature. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2011/08/110817092227.htm
University of California - Los Angeles Health Sciences. "Cells derived from pluripotent stem cells are developmentally immature." ScienceDaily. www.sciencedaily.com/releases/2011/08/110817092227.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins