Featured Research

from universities, journals, and other organizations

Better 'photon loops' may be key to computer and physics advances

Date:
August 22, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Scientists have designed a fault-tolerant way to make "photon delay" devices, a key component for future photon-based computer chips.

Artist's rendering of the proposed JQI fault-tolerant photon delay device for a future photon-based microchip. The devices ordinarily have a single row of resonators; using multiple rows like this provides alternative pathways for the photons to travel around any physical defects.
Credit: JQI

Surprisingly, transmitting information-rich photons thousands of miles through fiber-optic cable is far easier than reliably sending them just a few nanometers through a computer circuit. However, it may soon be possible to steer these particles of light accurately through microchips because of research performed at the Joint Quantum Institute of the National Institute of Standards and Technology (NIST) and the University of Maryland, together with Harvard University.

Related Articles


The scientists behind the effort say the work not only may lead to more efficient information processors on our desktops, but also could offer a way to explore a particularly strange effect of the quantum world known as the quantum Hall effect in which electrons can interfere with themselves as they travel in a magnetic field. The corresponding physics is rich enough that its investigation has already resulted in three Nobel Prizes, but many intriguing theoretical predictions about it have yet to be observed.

The advent of optical fibers a few decades ago made it possible for dozens of independent phone conversations to travel long distances along a single glass cable by, essentially, assigning each conversation to a different color-each narrow strand of glass carrying dramatic amounts of information with little interference.

Ironically, while it is easy to send photons far across a town or across the ocean, scientists have a harder time directing them to precise locations across short distances-say, a few hundred nanometers-and this makes it difficult to employ photons as information carriers inside computer chips.

"We run into problems when trying to use photons in microcircuits because of slight defects in the materials chips are made from," says Jacob Taylor, a theoretical physicist at NIST and JQI. "Defects crop up a lot, and they deflect photons in ways that mess up the signal."

These defects are particularly problematic when they occur in photon delay devices, which slow the photons down to store them briefly until the chip needs the information they contain. Delay devices are usually constructed from a single row of tiny resonators, so a defect among them can ruin the information in the photon stream. But the research team perceived that using multiple rows of resonators would build alternate pathways into the delay devices, allowing the photons to find their way around defects easily.

As delay devices are a vital part of computer circuits, the alternate-pathway technique may help overcome obstacles blocking the development of photon-based chips, which are still a dream of computer manufacturers. While that application would be exciting, lead author Mohammad Hafezi says the prospect of investigating the quantum Hall effect with the same technology also has great scientific appeal.

"The photons in these devices exhibit the same type of interference as electrons subjected to the quantum Hall effect," says Hafezi, a research associate at JQI. "We hope these devices will allow us to sidestep some of the problems with observing the physics directly, instead allowing us to explore them by analogy."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mohammad Hafezi, Eugene A. Demler, Mikhail D. Lukin, Jacob M. Taylor. Robust optical delay lines with topological protection. Nature Physics, 2011; DOI: 10.1038/NPHYS2063

Cite This Page:

National Institute of Standards and Technology (NIST). "Better 'photon loops' may be key to computer and physics advances." ScienceDaily. ScienceDaily, 22 August 2011. <www.sciencedaily.com/releases/2011/08/110822101948.htm>.
National Institute of Standards and Technology (NIST). (2011, August 22). Better 'photon loops' may be key to computer and physics advances. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/08/110822101948.htm
National Institute of Standards and Technology (NIST). "Better 'photon loops' may be key to computer and physics advances." ScienceDaily. www.sciencedaily.com/releases/2011/08/110822101948.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins