Featured Research

from universities, journals, and other organizations

New depiction of light could boost telecommunications channels

Date:
August 26, 2011
Source:
City College of New York
Summary:
Physicists have presented a new way to map spiraling light that could help harness untapped data channels in optical fibers. Increased bandwidth would ease the burden on fiber-optic telecommunications networks taxed by an ever-growing demand for audio, video and digital media. The new model could even spur enhancements in quantum computing and other applications.

Higher Order Poincare Sphere model developed by physicists with the Institute of Ultrafast Spectroscopy and Lasers tracks movement of complex forms of light.
Credit: Image courtesy of City College of New York

Physicists with the Institute of Ultrafast Spectroscopy and Lasers (IUSL) at The City College of New York have presented a new way to map spiraling light that could help harness untapped data channels in optical fibers. Increased bandwidth would ease the burden on fiber-optic telecommunications networks taxed by an ever-growing demand for audio, video and digital media. The new model, developed by graduate student Giovanni Milione, Professor Robert Alfano and colleagues, could even spur enhancements in quantum computing and other applications.

"People now can detect (light in) the ground channel, but this gives us a way to detect and measure a higher number of channels," says Mr. Milione. With such heavy traffic funneled through a single channel, there is great interest in exploiting others that can be occupied by complex forms of light, he explains.

The team published their work in the July 25 issue of Physical Review Letters. Mr. Milione will present it at the Optical Society of America's "Frontiers in Optics 2011" conference, October 16-20 in San Jose, Calif.

Polarization is everything to a physicist tracking light in an optical fiber or laser. More than a way to cut glare with sunglasses, polarization refers to a specific direction and orientation of the light's movement and electric field -- when it isn't going every which way as it does when emanating from a light bulb, for example.

"Being able to follow polarization and other changes as light travels gives you insight into the material it travels through, " explains Milione. This helps control the light and can essentially give a fingerprint of the material being analyzed.

Detecting the polarization also lets users finely tune a laser. Such control can allow a laser to burn away one layer of material while leaving the other layers it passes through intact.

Until now, only the simplest form of light, the ground state, could be mapped and controlled. Multiple higher channels in an optical fiber, which could be occupied by more complex light, were left sitting idle.

A globe-shaped model, called the Poincaré Sphere, has long been used to map such simple light. This light has peaks and troughs, like waves on the ocean, and moves or vibrates in "plane waves." One maps how light intersects the sphere in the same way one pinpoints a location on Earth using longitude and latitude.

But complex light moves with both spin and orbital angular momentum, more or less like the movement of our moon as it spins on its axis and orbits Earth.

Such light twists like a tornado as it travels through space and takes the form of what are called vector beams and vortices. To map these vortices the researchers expanded the existing sphere to develop their Higher Order Poincaré Sphere (HOPS).

The team studies even more complex patterns of light, such as star-shaped forms. Their model uses the HOPS to reduce what could be pages of mathematics to single equations. These are the mathematical tools that will harness the complex light for use in technology.

"The sphere facilitates understanding, showing phase vortices are on poles and vector beams are on the equator," explains Milione. "It organizes the relationship between these vortices of light."

"This kind of organization on the higher level Poincaré Sphere could clear the path to a number of novel physics and engineering efforts such as quantum computing and optical transitions; could greatly expand the sensitivity of spectroscopy and the complexity of computer cryptography; and might further push the boundaries what can be 'seen'," said Dr. Alfano.

The research was funded in part by Corning Inc. and the Army Research Office.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Giovanni Milione, H. Sztul, D. Nolan, R. Alfano. Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light. Physical Review Letters, 2011; 107 (5) DOI: 10.1103/PhysRevLett.107.053601

Cite This Page:

City College of New York. "New depiction of light could boost telecommunications channels." ScienceDaily. ScienceDaily, 26 August 2011. <www.sciencedaily.com/releases/2011/08/110825164929.htm>.
City College of New York. (2011, August 26). New depiction of light could boost telecommunications channels. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/08/110825164929.htm
City College of New York. "New depiction of light could boost telecommunications channels." ScienceDaily. www.sciencedaily.com/releases/2011/08/110825164929.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) — The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) — Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins