Featured Research

from universities, journals, and other organizations

Shaping up: Controlling a stem cell's form can determine its fate

Date:
September 20, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
New research reinforces the idea that stem cells can be induced to develop into specific types of cells solely by controlling their shape. The results may be important to the design of materials to induce the regeneration of lost or damaged tissues in the body.

Bone-like cell growth on nanofibers: Confocal microscope images detail the growth of a human bone marrow stromal cell (actin filaments in the cell "skeleton" are stained orange) on a nanofiber scaffold (green). The structure of thin fibers encourages stem cells to develop into the elongated, branched form characteristic of mature bone cells.
Credit: Tison, Simon/NIST

"Form follows function!" was the credo of early 20th century architects making design choices based on the intended use of the structure. Cell biologists may be turning that on its head. New research by a team working at the National Institute of Standards and Technology (NIST) reinforces the idea that stem cells can be induced to develop into specific types of cells solely by controlling their shape. The results may be important to the design of materials to induce the regeneration of lost or damaged tissues in the body.

Related Articles


Tissue engineering seeks to repair or re-grow damaged body tissues, often using some form of stem cells. Stem cells are basic repair units in the body that have the ability to develop into any of several different forms. The NIST experiments looked at primary human bone marrow stromal cells, adult stem cells that can be isolated from bone marrow and can "differentiate" into bone, fat or cartilage cells, depending.

"Depending on what?" is one of the key questions in tissue engineering. How do you ensure that the stem cells turn into the type you need? Chemical cues have been known to work in cases where researchers have identified the proper additives -- a hormone in the case of bone cells. Other research has suggested that cell differentiation on flat surfaces can be controlled by patterning the surface to restrict the locations where growing cells can attach themselves.

The experiments at NIST are believed to be the first head-to-head comparison of five popular tissue scaffold designs to examine the effect of architecture alone on bone marrow cells without adding any biochemical supplements other than cell growth medium. The scaffolds, made of a biocompatible polymer, are meant to provide a temporary implant that gives cells a firm structure on which to grow and ultimately rebuild tissue. The experiment included structures made by leaching and foaming processes (resulting in microscopic structures looking like clumps of insect-eaten lettuce), freeform fabrication (like microscopic rods stacked in a crisscross pattern) and electrospun nanofibers (a random nest of thin fibers). Bone marrow stromal cells were cultured on each, then analyzed to see which were most effective at creating deposits of calcium -- a telltale of bone cell activity. Microarray analysis also was used to determine patterns of gene expression for the cultured cells.

The results show that the stem cells will differentiate quite efficiently on the nanofiber scaffolds -- even without any hormone additives -- but not so on the other architectures. The distinction, says NIST biologist Carl Simon, Jr., seems to be shape. Mature bone cells are characteristically long and stringy with several extended branches. Of the five different scaffolds, only the nanofiber one, in effect, forces the cells to a similar shape, long and branched, as they try to find anchor points. Being in the shape of a bone cell seems to induce the cells to activate the genes that ultimately produce bone tissue.

"This suggests that a good strategy to design future scaffolds would be to take into account what shape you want to put the cells in," says Simon, adding, "That's kind of a tall order though, you'd have to understand a lot of stuff: how cell morphology influences cell behavior, and then how the three-dimensional structure can be used to control it." Despite the research still to be done on this method, the ability to physically direct cell differentiation by shape alone potentially would be simpler, cheaper and possibly safer than using biochemical supplements, he says.

The work was supported in part by the National Institute of Dental and Craniofacial Research, National Institutes of Health.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Girish Kumar, Christopher K. Tison, Kaushik Chatterjee, P. Scott Pine, Jennifer H. McDaniel, Marc L. Salit, Marian F. Young, Carl G. Simon. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 2011; DOI: 10.1016/j.biomaterials.2011.08.054

Cite This Page:

National Institute of Standards and Technology (NIST). "Shaping up: Controlling a stem cell's form can determine its fate." ScienceDaily. ScienceDaily, 20 September 2011. <www.sciencedaily.com/releases/2011/09/110913172708.htm>.
National Institute of Standards and Technology (NIST). (2011, September 20). Shaping up: Controlling a stem cell's form can determine its fate. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/09/110913172708.htm
National Institute of Standards and Technology (NIST). "Shaping up: Controlling a stem cell's form can determine its fate." ScienceDaily. www.sciencedaily.com/releases/2011/09/110913172708.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins