Featured Research

from universities, journals, and other organizations

Twitter data used to track vaccination rates and attitudes

Date:
October 17, 2011
Source:
Penn State
Summary:
The first case study in how social-media sites can affect the spread of a disease has been designed and implemented by a scientist studying attitudes toward the H1N1 vaccine. The method is expected to be repeated in the study of other diseases.

Marcel Salathé at Penn State University used Twitter data to track vaccination rates and sentiments.
Credit: National Institutes of Health

A unique and innovative analysis of how social media can affect the spread of a disease has been designed and implemented by a scientist at Penn State University studying attitudes toward the H1N1 vaccine. Marcel Salathé, an assistant professor of biology, studied how users of Twitter -- a popular microblogging and social-networking service -- expressed their sentiments about a new vaccine. He then tracked how the users' attitudes correlated with vaccination rates and how microbloggers with the same negative or positive feelings seemed to influence others in their social circles.

The research is considered the first case study in how social-media sites affect and reflect disease networks, and the method is expected to be repeated in the study of other diseases.

The results will be published in the journal PLoS Computational Biology.

Salathé explained that he chose Twitter for two reasons. First, unlike the contents of Facebook, Twitter messages, known as "tweets," are considered public data and anyone can "follow," or track, the tweets of anyone else. "People tweet because they want other members of the public to hear what they have to say," Salathé said. Second, Twitter is the perfect database for learning about people's sentiments. "Tweets are very short -- a maximum of 140 characters," Salathé explained. "So users have to express their opinions and beliefs about a particular subject very concisely." Salathé began by amassing 477,768 tweets with vaccination-related keywords and phrases. He then tracked users' sentiments about a particular new vaccine for combating H1N1 -- a virus strain responsible for swine flu. The collection process began in August 2009, when news of the new vaccine first was made public, and continued through January 2010.

Salathé explained that sorting through the enormous number of vaccination-related tweets was no simple matter. First, he partitioned a random subset of about 10 percent and asked Penn State students to rate them as positive, negative, neutral, or irrelevant. For example, a tweet expressing a desire to get the H1N1 vaccine would be considered positive, while a tweet expressing the belief that the vaccine causes harm would be considered negative. A tweet concerning a different vaccine, for example, the Hepatitis B vaccine, would be considered irrelevant. Then, Shashank Khandelwal, a computer programmer and analyst in Penn State's Department of Biology and co-author of the paper, used the students' ratings to design a computer algorithm responsible for cataloging the remaining 90 percent of the tweets according to the sentiments they expressed. "The human-rated tweets served as a 'learning set' that we used to 'teach' the computer how to rate the tweets accurately," Salathé explained. After the tweets were analyzed by the computer algorithm, the final tally, after the irrelevant ones were eliminated, was 318,379 tweets expressing either positive, negative, or neutral sentiments about the H1N1 vaccine.

Because Twitter users often include a location in their profiles, Salathé was able to categorize the expressed sentiments by U.S. region. Also, using data from the Centers for Disease Control and Prevention (CDC), he was able to determine how vaccination attitudes correlated with CDC- estimated vaccination rates. Using these data, Salathé found definite patterns. For example, the highest positive-sentiment users were from New England, and that region also had the highest H1N1 vaccination rate. "These results could be used strategically to develop public-health initiatives," Salathé explained. "For example, targeted campaigns could be designed according to which region needs more prevention education. Such data also could be used to predict how many doses of a vaccine will be required in a particular area."

In addition, Salathé was able to construct an intricate social network by determining who followed the tweets of whom; that is, he was able to determine clusters of like-minded Twitter users. "The assumption is that people tend to communicate online almost exclusively with people who think the same way. This phenomenon creates 'echo chambers' in which dissenting opinions are not heard," Salathé said. As it turned out, that assumption was correct. Salathé found that users with either negative or positive sentiments about the H1N1 vaccine followed like-minded people. "The public-health message here is obvious," Salathé said. "If anti-vaccination communities cluster in real, geographical space, as well, then this is likely to lead to under-vaccinated communities that are at great risk of local outbreaks."

He explained that, when unvaccinated individuals cluster together, herd immunity -- a population-level immunity that occurs when a critical mass has been vaccinated -- no longer affords much protection against disease. "By definition, herd immunity only works if unvaccinated, unprotected individuals are distributed sparsely throughout the population, buffered from the disease by vaccinated individuals," Salathé said. "Unfortunately, the data from Twitter seem to indicate that the buffer of protection cannot be counted on if these clusters exist in real, geographical space."

In addition to location-related and network patterns, Salathé was able to track sentiment patterns over time. For example, he found that negative expressions spiked during the time period when the vaccine was first announced. Later, more-positive sentiments emerged when the vaccine was first shipped across the United States. Salathé also tracked spikes of negative tweets that corresponded, not surprisingly, to periods of vaccine recall.

Salathé plans to use his unique social-media analysis to study other diseases, such as obesity, hypertension, and heart disease. "We think of a disease such as obesity as noninfectious, while a disease such as the flu is clearly infectious. However, it might be more useful to think of behavior-influenced diseases as infectious, as well," Salathé said. "Lifestyle choices might be 'picked up' in much the same way that pathogens -- viruses or bacteria -- are acquired. The difference is simply that in the one instance the infectious agent is an idea rather than a biological entity."

Salathé added that, in the industrialized world, future generations will worry less about infectious diseases and more about diseases linked to lifestyle and behavior. "Behavior-influenced diseases always have existed, but, until recently, they were masked: People died of infectious diseases relatively early in their life cycles. So behavior-influenced diseases weren't really on anyone's radar," Salathé explained. "Now that heart disease -- a malady caused, at least in part, by lifestyle -- is moving to the top of the list of killers, it might be wise to focus on how social media influences behaviors such as poor diet and infrequent exercise," Salathé said.

The research was funded by a Society in Science-Branco Weiss Fellowship.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marcel Salathé, Shashank Khandelwal. Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control. PLoS Computational Biology, 2011; 7 (10): e1002199 DOI: 10.1371/journal.pcbi.1002199

Cite This Page:

Penn State. "Twitter data used to track vaccination rates and attitudes." ScienceDaily. ScienceDaily, 17 October 2011. <www.sciencedaily.com/releases/2011/10/111013184817.htm>.
Penn State. (2011, October 17). Twitter data used to track vaccination rates and attitudes. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2011/10/111013184817.htm
Penn State. "Twitter data used to track vaccination rates and attitudes." ScienceDaily. www.sciencedaily.com/releases/2011/10/111013184817.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) — Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) — It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins