Featured Research

from universities, journals, and other organizations

Laser ion source will produce a new generation of semiconductors

Date:
October 26, 2011
Source:
Institute of Plasma Physics and Laser Microfusion
Summary:
For ion implantation, that is 'hammering' ions into the surface layer of the material, conventional ion accelerators are commonly used. Laser ion sources are much simpler, cheaper and more universal. However, they emit wide energy ions usually accompanied by some admixtures. Scientists have now produced a unique laser ion source has been built which is equipped with a special system for accelerating ions to a chosen energy and for eliminating admixtures.

Simulation of the trajectory of ions in laser ion source.
Credit: Image courtesy of Institute of Plasma Physics and Laser Microfusion

For ion implantation, that is 'hammering' ions into the surface layer of the material, conventional ion accelerators are commonly used. Laser ion sources are much simpler, cheaper and more universal. However, they emit wide energy ions usually accompanied by some admixtures. In the Institute of Plasma Physics and Laser Microfusion in Warsaw a unique laser ion source has been built which is equipped with a special system for accelerating ions to a chosen energy and for eliminating admixtures. This device has already been used to produce samples of a new generation of semiconductors: a layer of silica (SiO2) in which germanium nanocrystals have been formed.

Laser Ion Sources (LIS) are simple devices that produce ions in interaction of a focused laser beam with the target placed in a vacuum vessel. Admixtures that happen to be in the target often cause problems -- together with the proper ions, they can modify the sample. Moreover, the laser pulse also pulls out atoms and debris from the target which are deposited on the irradiated sample and modify its surface. "To prevent such effects, we have designed and built a device for ion implantation with a unique electric system for ion acceleration," says Marcin Rosiński, a PhD student from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw.

Ion implementation is the process of embedding ions into the surface layer of the sample in order to change some properties of the material, mechanical or electrical. Currently, ion accelerators are routinely used for this purpose. Laser ion sources have a chance to excel those devices: they are smaller, simpler and can produce ions from high-melting materials such as tantalum or tungsten. What is more, the ion beam can easily be modified by the change of parameters and the geometry of the laser-target-sample system. The released ions can well be accelerated in the external electric field.

However, to be able to use the LIS type sources in industry, some requirements must be fulfilled: the beam of ions cannot possess impurities and the ions should have almost the same specific energy. To meet both requirements the laser ion source with special electrostatic system must be applied.

In the device built at the IPPLM the low-energy laser pulse lasts 3.5 nanoseconds. The laser pulse energy, in the first phase of laser-matter interaction, is transferred to free electrons which subsequently ionise atoms of target material and admixtures. The main part of the laser pulse energy directly heats ionised matter (plasma) causing its quick expansion. A broad energy distribution of the ions expanding from plasma results from the nature of the process of plasma generation.

Some particles and debris extracted from the target by the laser pulse are electrically neutral, which is why they expand without deflection in the electric field and go straight onto the screen that is placed exactly on the axis of the system, to shield the sample. At the same time, laser-produced ions which avoid the screen are accelerated and focused by the electric field on the sample located on the axis behind the screen. "We have selected the parameters of the field in such a way that only the chosen ions of the target reach the sample. The spot of the focused beam is 1 mm in diameter," explains Rosiński.

The low-energy laser used in the experiment does not heat itself and is capable of generating 10 thousand or more laser pulses within some ten minutes. Those advantages make it possible for scientists to control precisely the number of ions that reach the sample.

The solution proposed by the scientists from the IPPLM has successfully been used to explore the process of germanium ion implantation in silica (SiO2) layer with a view to fabricate germanium nanocrystals within it. Thus, a modified semiconductor has been created whose prospective implementation in electronics is widely anticipated, for example in miniaturisation of some memory chips or in elements for light emission.

To obtain germanium nanocrystals from the laser-produced ions, the implanted sample should be heated in the temperature of 600 to 1200 Celsius degrees. In this process some germanium crystals, ranging in size from a few to 20 nanometres (billionth of a metre) are created. "Our implanted samples, after heating, are examined with the use of various sophisticated, currently available measuring methods in the specialised laboratories, mainly at the Universities in Messina and Catania in Sicily. We have analysed both the results of ion implantation and the formation of nanocrystal structures in the samples," says Rosiński.

Laser ion source built and tested at the IPPLM is a prototype device expected to find applications in industry. "In two years, we will have finished the work connected with optimization of our device regarding industrial usage but we have already started looking for enterprises that are interested in implementing this technology," summarises Prof. Jerzy Wołowski, the Head of Laser Plasma Division at the IPPLM.

The construction of the device for laser induced implantation was started at the IPPLM a few years ago within the framework of European SEMINANO project.


Story Source:

The above story is based on materials provided by Institute of Plasma Physics and Laser Microfusion. Note: Materials may be edited for content and length.


Cite This Page:

Institute of Plasma Physics and Laser Microfusion. "Laser ion source will produce a new generation of semiconductors." ScienceDaily. ScienceDaily, 26 October 2011. <www.sciencedaily.com/releases/2011/10/111020084812.htm>.
Institute of Plasma Physics and Laser Microfusion. (2011, October 26). Laser ion source will produce a new generation of semiconductors. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/10/111020084812.htm
Institute of Plasma Physics and Laser Microfusion. "Laser ion source will produce a new generation of semiconductors." ScienceDaily. www.sciencedaily.com/releases/2011/10/111020084812.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins