Featured Research

from universities, journals, and other organizations

Step toward unraveling Alzheimer's disease

October 27, 2011
University of Alabama in Tuscaloosa
Scientists outline new methods for better understanding links between specific proteins and the risks associated with Alzheimer's disease in a new study.

By engineering simple systems, like the nematode roundworm C. elegans, shown under a microscope in this photo depicting fluorescent illumination of select neurons within the animal, scientists are gaining a better understanding of cellular mechanisms associated with complex human diseases, like Alzheimer's.
Credit: Chip Cooper, The University of Alabama

Scientists outline new methods for better understanding links between specific proteins and the risks associated with Alzheimer's disease in an article co-authored by University of Alabama researchers and publishing in Science Express.

Related Articles

In experiments using a series of model organisms, including yeast, microscopic roundworms and rats, the researchers show how basic mechanisms inside cells are disrupted when a specific human protein, known as the amyloid beta peptide, fails to properly fold. This study also shows the role a second protein, referred to by the scientists as PICALM, can play in modifying the problem.

"By using these yeast models, in combination with worms, we really are hopeful of finding a way by which we can understand and maybe combat Alzheimer's disease more rapidly," said Dr. Guy Caldwell, professor of biological sciences at The University of Alabama and one of three UA-authors on the Science article.

The research involved scientists from several universities and research institutes, including the Whitehead Institute and Massachusetts Institute of Technology, where the lead author, Dr. Sebastian Treusch, is affiliated. Treusch works in the lab of Dr. Susan Lindquist, a renowned expert in cell biology and collaborator with Caldwell on a grant from the Howard Hughes Medical Institute that funded part of this research.

While the repeated misfoldings of amyloid beta peptides within the human brain were previously known to trigger the death of neurons, resulting in Alzheimer's, Caldwell says the underlying mechanisms of toxicity weren't as well understood.

Properly functioning cells must efficiently deliver proteins and chemicals to other parts of the cell, Caldwell said. This research shows how the amyloid beta peptide interrupts a specific cellular pathway called endocytosis, preventing the delivery of other needed proteins to other parts of the cell.

"Understanding what is going wrong inside a cell, or what pathways or proteins might be directly linked to the mechanisms that are involved in Alzheimer's, is really a much more fruitful strategy for drug development."

Information drawn from the brains of deceased Alzheimer's patients, who previously donated their bodies to science, was also significant in the effort, Caldwell said.

Rapid advances in DNA sequencing methods and human genetic population studies are generating an overwhelming number of leads for researchers; those genetic studies, taken in combination with advantageous attributes of simple organisms, can reveal basic functions of genes and proteins and can be an insightful combination, Caldwell says.

"What this paper shows is that simple systems, like yeast and worms, can be engineered to discern mechanisms that might be associated with complex human diseases, and, by that, we may accelerate the path of discovery for advancing therapeutics for those diseases."

UA's lead author is Dr. Shusei Hamamichi, a former post-doctoral researcher in the Caldwell lab who earned his doctorate at UA while working alongside Caldwell and Dr. Kim Caldwell, also a co-author of the paper and an associate professor of biological sciences at UA.

In the paper's conclusion, the researchers describe the potential significance of the development in light of the challenges faced in understanding and treating Alzheimer's disease.

"The treatments available for AD are few and their efficacy limited," the scientists wrote. "Determining how best to rescue neuronal function in the context of the whole brain is a problem of staggering proportions."

"On a personal level," Caldwell said, "so many of us have been affected by family or loved ones who have suffered from Alzheimer's. It's a great privilege for us to be able to contribute to the respective avenues of our understanding of the disease. It's a devastating disorder. The societal cost of Alzheimer's disease is tremendous."

Story Source:

The above story is based on materials provided by University of Alabama in Tuscaloosa. Note: Materials may be edited for content and length.

Journal Reference:

  1. Sebastian Treusch, Shusei Hamamichi, Jessica L. Goodman, Kent E. S. Matlack, Chee Yeun Chung, Valeriya Baru, Joshua M. Shulman, Antonio Parrado, Brooke J. Bevis, Julie S. Valastyan, Haesun Han, Malin Lindhagen-Persson, Eric M. Reiman, Denis A. Evans, David A. Bennett, Anders Olofsson, Philip L. Dejager, Rudolph E. Tanzi, Kim A. Caldwell, Guy A. Caldwell, Susan Lindquist. Functional Links Between Aβ Toxicity, Endocytic Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science, 2011; DOI: 10.1126/science.1213210

Cite This Page:

University of Alabama in Tuscaloosa. "Step toward unraveling Alzheimer's disease." ScienceDaily. ScienceDaily, 27 October 2011. <www.sciencedaily.com/releases/2011/10/111027145851.htm>.
University of Alabama in Tuscaloosa. (2011, October 27). Step toward unraveling Alzheimer's disease. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2011/10/111027145851.htm
University of Alabama in Tuscaloosa. "Step toward unraveling Alzheimer's disease." ScienceDaily. www.sciencedaily.com/releases/2011/10/111027145851.htm (accessed January 30, 2015).

Share This

More From ScienceDaily

More Mind & Brain News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Binge-Watching TV Linked To Loneliness

Binge-Watching TV Linked To Loneliness

Newsy (Jan. 29, 2015) Researchers at University of Texas at Austin found a link between binge-watching TV shows and feelings of loneliness and depression. Video provided by Newsy
Powered by NewsLook.com
Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

More Coverage

Yeast Model Connects Alzheimer's Disease Risk and Amyloid Beta Toxicity

Oct. 27, 2011 In a development that sheds new light on the pathology of Alzheimer's disease (AD), a team of scientists has identified connections between genetic risk factors for the disease and the effects ... read more

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins