Featured Research

from universities, journals, and other organizations

Fast new method for mapping blood vessels may aid cancer research

Date:
November 16, 2011
Source:
Optical Society of America
Summary:
Computational neuroscientists have developed a new system, tested in mouse brain samples, that substantially reduces blood vessel mapping time.

Reconstruction of a small section from the previous image, showing the relative thickness of each blood vessel in the network (color-coded by thickness). The area depicted in the image is about 0.275 millimeters across.
Credit: Biomedical Optics Express.

Like normal tissue, tumors thrive on nutrients carried to them by the blood stream. The rapid growth of new blood vessels is a hallmark of cancer, and studies have shown that preventing blood vessel growth can keep tumors from growing, too. To better understand the relationship between cancer and the vascular system, researchers would like to make detailed maps of the complete network of blood vessels in organs.

Related Articles


Unfortunately, the current mapping process is time-consuming: using conventional methods, mapping a one-centimeter block of tissue can take months. In a paper published in the October issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express, computational neuroscientists at Texas A&M University, along with collaborators at the University of Illinois and Kettering University, describe a new system, tested in mouse brain samples, that substantially reduces that time.

The method uses a technique called knife-edge scanning microscopy (KESM). First, blood vessels are filled with ink, and the whole brain sample is embedded in plastic. Next, the plastic block is placed onto an automated vertically moving stage. A diamond knife shaves a very thin slice -- one micrometer or less -- off the top of the block, imaging the sample line by line at the tip of the knife. Each tiny movement of the stage triggers the camera to take a picture. In this way, the researchers can get the full 3-D structure of the mouse brain's vascular network -- from arteries and veins down to the smallest capillaries -- in less than two days at full production speed. In the future the team plans to augment the process with fluorescence imaging, which will allow researchers to link brain structure to function.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. David Mayerich, Jaerock Kwon, Chul Sung, Louise Abbott, John Keyser, Yoonsuck Choe. Fast macro-scale transmission imaging of microvascular networks using KESM. Biomedical Optics Express, 2011; 2 (10): 2888 DOI: 10.1364/BOE.2.002888

Cite This Page:

Optical Society of America. "Fast new method for mapping blood vessels may aid cancer research." ScienceDaily. ScienceDaily, 16 November 2011. <www.sciencedaily.com/releases/2011/10/111031120255.htm>.
Optical Society of America. (2011, November 16). Fast new method for mapping blood vessels may aid cancer research. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2011/10/111031120255.htm
Optical Society of America. "Fast new method for mapping blood vessels may aid cancer research." ScienceDaily. www.sciencedaily.com/releases/2011/10/111031120255.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins