Featured Research

from universities, journals, and other organizations

Peering inside the 'deflagration-to-detonation transition' of explosions

Date:
November 28, 2011
Source:
American Physical Society
Summary:
Explosions of reactive gases and the associated rapid, uncontrolled release of large amounts of energy pose threats of immense destructive power to mining operations, fuel storage facilities, chemical processing plants, and many other industrial applications. To gain a better understanding of what's going on during these explosions, researchers have studied the deflagration-to-detonation (DDT) transition, which can occur in environments ranging from experimental and industrial systems on Earth to astrophysical thermonuclear supernovae explosions.

Explosions of reactive gases and the associated rapid, uncontrolled release of large amounts of energy pose threats of immense destructive power to mining operations, fuel storage facilities, chemical processing plants, and many other industrial applications.

To gain a better understanding of what's going on during these explosions, US Naval Research Laboratory research physicist Alexei Poludnenko, and Elaine Oran, senior scientist for reactive flow physics, teamed up with Sandia National Laboratories' Thomas Gardiner, principal member of technical staff, to study the deflagration-to-detonation (DDT) transition, which can occur in environments ranging from experimental and industrial systems on Earth to astrophysical thermonuclear supernovae explosions.

The team presented their findings at the American Physical Society's 64th Annual DFD Meeting, on Nov. 20-22, 2011, in Baltimore, Maryland.

"Explosions are most often driven by flames propagating at relatively slow subsonic velocities," explains Poludnenko. "Under certain conditions, however, this 'slow' mode of burning can transition to a completely different regime -- detonation, a.k.a. the 'deflagration-to-detonation transition.' In this case, burning is driven by very fast, strong shock waves that can travel at more than 5 times the speed of sound. The power and destructive potential of such detonation- driven explosions is vastly greater than flame-driven ones. Understanding the conditions and physical mechanisms that can cause the transition between these two explosive modes is critical for developing proper preventive and protective measures in industrial settings."

Significant research efforts have been devoted to studying the deflagration-to-detonation transition, and progress has been made in understanding its role in confined systems. Importantly, it was discovered that walls and obstacles are instrumental in detonation formation. For example, burning in a closed space naturally leads to an increase in pressure and the formation of shocks that can be further amplified through reflections with walls and obstacles -- ultimately producing a detonation.

Walls and obstacles were clearly important in these earlier studies. But scientists also wondered if unconfined flames could be inherently susceptible to the development of detonations.

"We've used detailed computer simulations of flames in hydrogen-air and methane-air mixtures in a fully unconfined environment under atmospheric conditions to study whether detonations can indeed form in such systems," Poludnenko says.

Among their findings: A subsonic flame evolving in the presence of sufficiently intense turbulence can spontaneously form a detonation both in reactive gases on Earth as well as in the interior of the white dwarf stars -- providing a missing link for the current theoretical models of Type la supernovae (which are formed by the violent explosion of a white dwarf star).

This work is supported by the Naval Research Laboratory and the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Peering inside the 'deflagration-to-detonation transition' of explosions." ScienceDaily. ScienceDaily, 28 November 2011. <www.sciencedaily.com/releases/2011/11/111122113216.htm>.
American Physical Society. (2011, November 28). Peering inside the 'deflagration-to-detonation transition' of explosions. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/11/111122113216.htm
American Physical Society. "Peering inside the 'deflagration-to-detonation transition' of explosions." ScienceDaily. www.sciencedaily.com/releases/2011/11/111122113216.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins