Featured Research

from universities, journals, and other organizations

Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors

Date:
November 29, 2011
Source:
Springer
Summary:
Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilize complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules.

Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilise complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules, in a study about to be published in the European Physical Journal E, by Valentina Mengarelli and her colleagues from the Solid State Physics Laboratory at the Paris-Sud University in Orsay, France, in collaboration with Paris 7 and Ιvry Universities scientists.

The authors studied soluble complexes made of negatively charged DNA or another negatively charged polymer -- polystyrene-sulfonate (PSSNa) -- and a so-called condensation agent, which is a negatively charged polymer, known as linear polyethyleneimine (PEI). PEI participates in the condensation process by tying onto a molecule such as DNA, like tangled hair, to form an overall positively charged DNA/polymer complex structure. Previous research focused mainly on non-soluble complexes, while the few attempts at focusing on soluble complexes dealt either with smaller polymers or those with a weaker electric charge, which may therefore be easier to stabilise.

The French team thus confirmed experimentally that the complexation process does not depend on the rigidity of the original molecule, be it DNA or PSSNa, but on the positive/negative electric charge ratio and on the polymer concentrations. It is the interactions between electrically charged parts within the complex that govern its properties. When the condensation agent is in excess, the positively charged complex is then attracted to negatively charged biological cell membranes. This could be used to deliver the DNA into a targeted cell nucleus as part of gene therapy treatment.Future work will focus on using long DNA molecules and novel polymers to form complexes of controlled size and electric charge for gene therapy.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mengarelli V, Auvray L, Pastrι D, and Zeghal M,. Charge inversion, condensation and decondensation of DNA and Polystyrene sulfonate by polyethylenimine. European Physical Journal E (EPJE), 2011; 34, 127 DOI: 10.1140/epje/i2011/11127-3

Cite This Page:

Springer. "Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors." ScienceDaily. ScienceDaily, 29 November 2011. <www.sciencedaily.com/releases/2011/11/111128115641.htm>.
Springer. (2011, November 29). Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/11/111128115641.htm
Springer. "Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors." ScienceDaily. www.sciencedaily.com/releases/2011/11/111128115641.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins