Featured Research

from universities, journals, and other organizations

Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors

Date:
November 29, 2011
Source:
Springer
Summary:
Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilize complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules.

Gene therapy can only be effective if delivered by a stable complex molecule. Now, scientists have determined the conditions that would stabilise complex molecular structures that are subject to inherent attractions and repulsions triggered by electric charges at the surfaces of the molecules, in a study about to be published in the European Physical Journal E, by Valentina Mengarelli and her colleagues from the Solid State Physics Laboratory at the Paris-Sud University in Orsay, France, in collaboration with Paris 7 and Ιvry Universities scientists.

Related Articles


The authors studied soluble complexes made of negatively charged DNA or another negatively charged polymer -- polystyrene-sulfonate (PSSNa) -- and a so-called condensation agent, which is a negatively charged polymer, known as linear polyethyleneimine (PEI). PEI participates in the condensation process by tying onto a molecule such as DNA, like tangled hair, to form an overall positively charged DNA/polymer complex structure. Previous research focused mainly on non-soluble complexes, while the few attempts at focusing on soluble complexes dealt either with smaller polymers or those with a weaker electric charge, which may therefore be easier to stabilise.

The French team thus confirmed experimentally that the complexation process does not depend on the rigidity of the original molecule, be it DNA or PSSNa, but on the positive/negative electric charge ratio and on the polymer concentrations. It is the interactions between electrically charged parts within the complex that govern its properties. When the condensation agent is in excess, the positively charged complex is then attracted to negatively charged biological cell membranes. This could be used to deliver the DNA into a targeted cell nucleus as part of gene therapy treatment.Future work will focus on using long DNA molecules and novel polymers to form complexes of controlled size and electric charge for gene therapy.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mengarelli V, Auvray L, Pastrι D, and Zeghal M,. Charge inversion, condensation and decondensation of DNA and Polystyrene sulfonate by polyethylenimine. European Physical Journal E (EPJE), 2011; 34, 127 DOI: 10.1140/epje/i2011/11127-3

Cite This Page:

Springer. "Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors." ScienceDaily. ScienceDaily, 29 November 2011. <www.sciencedaily.com/releases/2011/11/111128115641.htm>.
Springer. (2011, November 29). Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2011/11/111128115641.htm
Springer. "Stabilizing entangled spaghetti-like materials: Controling forces between oppositely charged polymers opens new route for gene therapy vectors." ScienceDaily. www.sciencedaily.com/releases/2011/11/111128115641.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) — A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) — Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Robot Replacements for Foxconn's Workers

Robot Replacements for Foxconn's Workers

Reuters - Business Video Online (Jan. 28, 2015) — Foxconn parent Hon Hai Precision Industry is looking to automation to keep productivity up without the rising costs of human labor. Meg Teckman reports. Video provided by Reuters
Powered by NewsLook.com
More Guns Found in Carry-on Bags at US Airports

More Guns Found in Carry-on Bags at US Airports

AP (Jan. 27, 2015) — The Transportation Security Administration says officers discovered 2,212 firearms during safety screenings last year, a 22 percent jump over 2013. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins