Featured Research

from universities, journals, and other organizations

Solar storms could sandblast the moon

Date:
December 7, 2011
Source:
NASA/Goddard Space Flight Center
Summary:
Solar storms and associated Coronal Mass Ejections can significantly erode the lunar surface according to a new set of computer simulations by NASA scientists. In addition to removing a surprisingly large amount of material from the lunar surface, this could be a major method of atmospheric loss for planets like Mars that are unprotected by a global magnetic field.

Coronal Mass Ejection as viewed by the Solar Dynamics Observatory on June 7, 2011.
Credit: NASA/SDO

Solar storms and associated Coronal Mass Ejections (CMEs) can significantly erode the lunar surface according to a new set of computer simulations by NASA scientists. In addition to removing a surprisingly large amount of material from the lunar surface, this could be a major method of atmospheric loss for planets like Mars that are unprotected by a global magnetic field.

The research is being led by Rosemary Killen at NASA's Goddard Space Flight Center, Greenbelt, Md., as part of the Dynamic Response of the Environment At the Moon (DREAM) team within the NASA Lunar Science Institute.

CMEs are basically an intense gust of the normal solar wind, a diffuse stream of electrically conductive gas called plasma that's blown outward from the surface of the Sun into space. A strong CME may contain around a billion tons of plasma moving at up to a million miles per hour in a cloud many times the size of Earth.

The moon has just the barest wisp of an atmosphere, technically called an exosphere because it is so tenuous, which leaves it vulnerable to CME effects. The plasma from CMEs impacts the lunar surface, and atoms from the surface are ejected in a process called "sputtering."

"We found that when this massive cloud of plasma strikes the moon, it acts like a sandblaster and easily removes volatile material from the surface," said William Farrell, DREAM team lead at NASA Goddard. "The model predicts 100 to 200 tons of lunar material -- the equivalent of 10 dump truck loads -- could be stripped off the lunar surface during the typical 2-day passage of a CME."

This is the first time researchers have attempted to predict the effects of a CME on the moon. "Connecting various models together to mimic conditions during solar storms is a major goal of the DREAM project," says Farrell.

Plasma is created when energetic events, like intense heat or radiation, remove electrons from the atoms in a gas, turning the atoms into electrically charged particles called ions. The Sun is so hot that the gas is emitted in the form of free ions and electrons called the solar wind plasma. Ejection of atoms from a surface or an atmosphere by plasma ions is called sputtering.

"Sputtering is among the top five processes that create the moon's exosphere under normal solar conditions, but our model predicts that during a CME, it becomes the dominant method by far, with up to 50 times the yield of the other methods," says Killen, lead author of a paper on this research appearing in a special issue of the Journal of Geophysical Research Planets.

CMEs are effective at removing lunar material not only because they are denser and faster than the normal solar wind, but also because they are enriched in highly charged, heavy ions, according to the team. The typical solar wind is dominated by lightweight hydrogen ions (protons). However, a heavier helium ion with more electrons removed, and hence a greater electric charge, can sputter tens of times more atoms from the lunar surface than a hydrogen ion.

The team used data from satellite observations that revealed this enrichment as input to their model. For example, helium ions comprise about four percent of the normal solar wind, but observations reveal that during a CME, they can increase to over 20 percent. When this enrichment is combined with the increased density and velocity of a CME, the highly charged, heavy ions in CMEs can sputter 50 times more material than protons in the normal solar wind.

"The computer models isolate the contributions from sputtering and other processes," says Dana Hurley, a co-author on the paper at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. "Comparing model predictions through a range of solar wind conditions allows us to predict the conditions when sputtering should dominate over the other processes. Those predictions can later be compared to data during a solar storm."

The researchers believe that NASA's Lunar Atmosphere And Dust Environment Explorer (LADEE) -- a lunar orbiter mission scheduled to launch in 2013 -- will be able to test their predictions. The strong sputtering effect should kick lunar surface atoms to LADEE's orbital altitude, around 20 to 50 kilometers (about 12.4 to 31 miles), so the spacecraft will see them increase in abundance.

"This huge CME sputtering effect will make LADEE almost like a surface mineralogy explorer, not because LADEE is on the surface, but because during solar storms surface atoms are blasted up to LADEE," said Farrell.

The moon is not the only heavenly body affected by the dense CME driver gas. Space scientists have long been aware that these solar storms dramatically affect Earth's magnetic field and are responsible for intense aurora (Northern and Southern Lights).

While certain areas of the Martian surface are magnetized, Mars does not have a magnetic field that surrounds the entire planet. Therefore, CME gases have a direct path to sputter and erode that planet's upper atmosphere. In late 2013, NASA will launch the Mars Atmosphere and Volatile Evolution (MAVEN) mission that will orbit the Red Planet to investigate exactly how solar activity, including CMEs, removes the atmosphere.

On exposed small bodies like asteroids, the dense, fast-streaming CME gas should create a sputtered-enhanced exosphere about the object, similar to that expected at the Moon.

Papers on different aspects of the CME impact simulation are being written and will appear in the special issue of the Journal of Geophysical Research Planets. The team's research will also be presented December 5 during the fall meeting of the American Geophysical Union in San Francisco.

For more information about the DREAM team visit: http://ssed.gsfc.nasa.gov/dream/

NLSI is a virtual organization that enables collaborative, interdisciplinary research in support of NASA lunar science programs. The institute uses technology to bring scientists together from around the world and is composed of competitively selected U.S. teams and several international partners. NASA's Science Mission Directorate and the Human Exploration and Operations Mission Directorate in Washington fund NLSI, which is managed by NASA's Ames Research Center at Moffett Field, Calif.

For more information about the NLSI, visit: http://lunarscience.nasa.gov/


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Solar storms could sandblast the moon." ScienceDaily. ScienceDaily, 7 December 2011. <www.sciencedaily.com/releases/2011/12/111207000851.htm>.
NASA/Goddard Space Flight Center. (2011, December 7). Solar storms could sandblast the moon. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/12/111207000851.htm
NASA/Goddard Space Flight Center. "Solar storms could sandblast the moon." ScienceDaily. www.sciencedaily.com/releases/2011/12/111207000851.htm (accessed October 20, 2014).

Share This



More Space & Time News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com
Comet Set for Rare Close Shave With Mars

Comet Set for Rare Close Shave With Mars

AFP (Oct. 16, 2014) A fast-moving comet is about to shave by Mars for a once-in-a-million-years encounter that a flurry of spacecraft around the Red Planet hope to capture and photograph, NASA said. Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins