Featured Research

from universities, journals, and other organizations

Brain's cortex plays an essential part in emotional learning

Date:
December 12, 2011
Source:
INSERM (Institut national de la santé et de la recherche médicale)
Summary:
The cortex, which is the largest zone of the brain and which is generally associated with high cognitive functions, is also a key zone for emotional learning, according to new research.

Cooperation between a team of French researchers from Inserm's "Neurocentre Magendie, Bordeaux" Research Unit 862 directed by Cyril Herry and a team of Swiss researchers from the Friedrich Miescher Institute of Biomedical Research directed by Andreas Lüthi at that institute has shown, for the first time, that the cortex, which is the largest zone of the brain and which is generally associated with high cognitive functions, is also a key zone for emotional learning.

Related Articles


The study, initiated by the Swiss researchers and published in Nature, constitutes ground-breaking work in exploring emotions in the brain.

Anxiety disorders constitute a complex family of pathologies affecting about 10% of adults. Patients suffering from such disorders fear certain situations or objects to exaggerated extents totally out of proportion to the real danger they present. The amygdala, a deep-brain structure, plays a key part in processing fear and anxiety. Its functioning can be disrupted by anxiety disorders.

Although researchers are well acquainted with the neurons of the amygdala and with the part those neurons play in expressing fear, their knowledge of the involvement of other regions of the brain remains limited. And yet, there can be no fear without sensory stimulation: before we become afraid, we hear, we see, we smell, we taste, or we feel something that triggers the fear. This sensory signal is, in particular, processed in the cortex, the largest region of the brain.

For the first time, these French and Swiss scientists have succeeded in visualising the path of a sensory stimulus in the brain during fear learning, and in identifying the underlying neuronal circuits.

What happens in the brain?

During the experiments conducted by the researchers, mice learnt to associate a sound with an unpleasant stimulus so that the sound itself became unpleasant for the animal.

The researchers used two-photon calcium imaging to visualise the activity of the neurons in the brain during this learning process. This imaging technique involves injecting a chemical indicator that is then absorbed by the neurons. When the neurons are stimulated, the calcium ions penetrate into the cells, where they increase the brightness of the indicator, which can then be detected under a scanning microscope.

Under normal conditions, the neurons of the auditory cortex are highly inhibited. During fear learning, a "disinhibitory" microcircuit in the cortex is activated: thus, for a short time window during the learning process, the release of acetylcholine in the cortex makes it possible to activate this microcircuit and to disinhibit the excitatory projection cells of the cortex. Thus, when the animal perceives a sound during fear learning, that sound is processed much more intensely than under normal conditions, thereby facilitating formation of memory. All of these stages have been visualised by means of the techniques developed by the researchers.

In order to confirm their discoveries, the researchers used another highly innovative recent technique (optogenetics) to disrupt the disinhibition selectively during the learning process. When they tested the memories of their mice (i.e. the association between the sound and the unpleasant stimulus), the next day they observed a severe deterioration in memory, directly showing that the phenomenon of cortical disinhibition is essential to the process of learning fear.

The discovery of this cortical disinhibitory microcircuit opens up interesting clinical prospects, and researchers can now imagine, in very specific situations, how to prevent a traumatism from establishing itself and from becoming pathological.


Story Source:

The above story is based on materials provided by INSERM (Institut national de la santé et de la recherche médicale). Note: Materials may be edited for content and length.


Journal Reference:

  1. Johannes J. Letzkus, Steffen B. E. Wolff, Elisabeth M. M. Meyer, Philip Tovote, Julien Courtin, Cyril Herry, Andreas Lüthi. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 2011; DOI: 10.1038/nature10674

Cite This Page:

INSERM (Institut national de la santé et de la recherche médicale). "Brain's cortex plays an essential part in emotional learning." ScienceDaily. ScienceDaily, 12 December 2011. <www.sciencedaily.com/releases/2011/12/111209105332.htm>.
INSERM (Institut national de la santé et de la recherche médicale). (2011, December 12). Brain's cortex plays an essential part in emotional learning. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2011/12/111209105332.htm
INSERM (Institut national de la santé et de la recherche médicale). "Brain's cortex plays an essential part in emotional learning." ScienceDaily. www.sciencedaily.com/releases/2011/12/111209105332.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) — "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) — Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) — A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins