Featured Research

from universities, journals, and other organizations

Model to foster new drug development to treat pain and epilepsy developed

Date:
December 21, 2011
Source:
University of California - Davis Health System
Summary:
Drawing on X-ray crystallography and experimental data, as well as a software suite for predicting and designing protein structures, a researcher has developed an algorithm that predicts what has been impossible to generate in the laboratory: the conformational changes in voltage-gated sodium channels when they are at rest or actively transmitting a signal in muscle and nerve cells.

This simplified version of sodium-channel gating demonstrates how nerve and muscle cells conduct signals at the molecular level in the body. It shows the structural changes that occur in the sodium channel molecule at rest and when activated, which allows sodium ions to pass through the cell membrane. UC Davis computational and structural biologists are working to design new drugs targeting this membrane protein to stop chronic pain and epileptic seizures.
Credit: Image courtesy of University of California - Davis Health System

Drawing on X-ray crystallography and experimental data, as well as a software suite for predicting and designing protein structures, a UC Davis School of Medicine researcher has developed an algorithm that predicts what has been impossible to generate in the laboratory: the conformational changes in voltage-gated sodium channels when they are at rest or actively transmitting a signal in muscle and nerve cells.

Structural modeling of the voltage-sensing mechanism is important because it allows researchers to generate testable hypotheses and design new, highly specific drugs to treat a wide range of disorders, from chronic pain to epilepsy. The study is published in the Dec. 12 early edition of the Proceedings of the National Academy of Sciences.

Voltage-gated sodium channels are embedded in the plasma membranes of nerve and muscle cells. The channel consists of a large protein that allows sodium ions to pass when a change in voltage occurs across the cell membrane. While high-resolution structures of the voltage sensors that control ion-gate activation have been identified in an activated state, scientists need to know all of the conformational changes that occur throughout the cycle of activation and rest to develop better treatments for disease.

"Sodium channels transmit pain and are the sites of action of local anesthetics," said Vladimir Yarov-Yarovoy, an assistant professor of physiology and membrane biology at the UC Davis School of Medicine who developed the models in collaboration with researchers from the University of Washington in Seattle. "They are critical targets for new drug development for the treatment of chronic pain, epilepsy and other conditions caused by gain or loss-of-function mutations in voltage-gated sodium channels, which hyperexcite sensory neurons or attenuate action-potential firing causing pain or seizures."

Serious chronic pain affects at least 116 million Americans each year, and epilepsy affects nearly 3 million Americans and 50 million people worldwide. Yet, the treatment of chronic pain and epilepsy remains a major unmet medical need.

"Currently available drugs for these conditions have limited effectiveness and significant side effects," said Yarov-Yarovoy. "While the research community has focused on identifying selective inhibitors of sodium-channel subtypes in nerve, heart and muscle cells, no new therapies have advanced to clinical trials. The algorithm is an innovative approach that fosters the design of novel subtype-selective sodium channel blocking drugs that have high efficacy and minimal side effects to treat these disorders."

Yarov-Yarovy developed his high-resolution structural models using the Rosetta computational methods along with available X-ray crystallography and experimental data. The models sidestep a significant challenge to researchers -- the inability to obtain X-ray crystallography structures for the resting and intermediate states of the sodium channel because of their instability and the limitations of current X-ray crystallization techniques.

"To fully grasp the mechanism of voltage activation, we need to know more than one conformation of the voltage-sensing domain," said Benoνt Roux, professor of biochemistry and molecular biophysics at the University of Chicago. "So far, X-ray crystallography has provided only the structure of the channel in the activated-state. The careful computational modeling developed by Yarov-Yarovoy is a powerful technique that is absolutely critical to advance our understanding of these systems."


Story Source:

The above story is based on materials provided by University of California - Davis Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Yarov-Yarovoy, P. G. DeCaen, R. E. Westenbroek, C.-Y. Pan, T. Scheuer, D. Baker, W. A. Catterall. PNAS Plus: Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1118434109

Cite This Page:

University of California - Davis Health System. "Model to foster new drug development to treat pain and epilepsy developed." ScienceDaily. ScienceDaily, 21 December 2011. <www.sciencedaily.com/releases/2011/12/111212153133.htm>.
University of California - Davis Health System. (2011, December 21). Model to foster new drug development to treat pain and epilepsy developed. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/12/111212153133.htm
University of California - Davis Health System. "Model to foster new drug development to treat pain and epilepsy developed." ScienceDaily. www.sciencedaily.com/releases/2011/12/111212153133.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) — The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) — The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins