Featured Research

from universities, journals, and other organizations

How the brain cell works: A dive into its inner network

Date:
December 24, 2011
Source:
University of Miami
Summary:
Scientists are developing the first systematic survey of protein interactions within brain cells. The team is aiming to reconstruct genome-wide in situ protein-protein interaction networks within the neurons of a multicellular organism.

At the core of the new imaging technology is the phenomenon known as FRET that occurs only when two fluorescently tagged molecules come within the distance of 8 nanometer or less. Detecting the FRET serves as a proxy for the two proteins X and Y associating within a living cell.
Credit: Image courtesy of University of Miami

University of Miami (UM) biology professor Akira Chiba is leading a multidisciplinary team to develop the first systematic survey of protein interactions within brain cells. The team is aiming to reconstruct genome-wide in situ protein-protein interaction networks (isPIN) within the neurons of a multicellular organism. Preliminary data were presented at the American Society for Cell Biology annual meeting, December 3 through 7, 2011, in Denver, Colorado.

"This work brings us closer to understanding the mechanics of molecules that keep us functioning," says Chiba, principal investigator of this project. "Knowing how our cells work will improve medicine. Most importantly, we will gain a better understanding of what life is at the molecular level."

Neurons are the cells that are mainly responsible for signaling in the brain. Like all other cells, each neuron produces millions of individual proteins that associate with one another and form a complex communication network. Until recently, observing these protein-protein interactions had not been possible due to technical difficulties. Individual proteins are small and typically less than 10 nm (nanometer) in diameter. Yet, this nano-scale distance was considered to be off-limits even with super-resolution microscopy.

Now, Chiba and his collaborators have developed a novel methodology to examine interaction of individual proteins in the fruit fly -- the model organism of choice for this project. The researchers are creating genetically engineered insects that are capable of expressing over 500 fluorescently-tagged assorted proteins, two at a time. The fluorescent tags make it possible to visualize the exact spot where a given pair of proteins associates with each other.

The team utilizes a custom- built 3D FLIM (fluorescent lifetime imaging microscopy) system to quantify this association event within the cells of a live animal. FLIM shows the location and time of such protein interaction, providing the data that allow creation of a point-by-point map of protein-protein interactions.

The pilot phase of this multidisciplinary project is being funded by the National Institutes of Health. It employs advanced genetics, molecular imaging technology and high-performance computation, among other fields. "Collaborating fluorescent chemistry, laser optics and artificial intelligence, my team is working in the 'jungle' of the molecules of life within the living cells," Chiba says. "This is a new kind of ecology played out at the scale of nanometers -- creating a sense of deja vu 80 years after the birth of modern ecology."

At present, the researchers still need to extrapolate from data obtained in test tubes. In the future, they will begin to visualize directly how the individual proteins interact with one another in their 'native environment,' which are the cells in our body.


Story Source:

The above story is based on materials provided by University of Miami. Note: Materials may be edited for content and length.


Cite This Page:

University of Miami. "How the brain cell works: A dive into its inner network." ScienceDaily. ScienceDaily, 24 December 2011. <www.sciencedaily.com/releases/2011/12/111221140507.htm>.
University of Miami. (2011, December 24). How the brain cell works: A dive into its inner network. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2011/12/111221140507.htm
University of Miami. "How the brain cell works: A dive into its inner network." ScienceDaily. www.sciencedaily.com/releases/2011/12/111221140507.htm (accessed July 26, 2014).

Share This




More Mind & Brain News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins