Featured Research

from universities, journals, and other organizations

Some nearby young stars may be much older than previously thought

Date:
January 18, 2012
Source:
University of Rochester
Summary:
New research concludes that the stars of Upper Scorpius are twice as old as previously thought.

Low in the south in the summer sky shines the constellation Scorpius and the bright, red supergiant star Antares. Many of the brightest stars in Scorpius, and hundreds of its fainter stars, are among the youngest stars found near Earth, and a new analysis of them may result in a rethinking of both their ages and the ages of other groups of stars.

New research by astrophysicists from the University of Rochester focused on stars in the north part of the constellation, known as Upper Scorpius, which is a part of the Scorpius-Centaurus OB association, one of our best studied groups of young stars and a benchmark sample for investigating the early lives of stars and the evolution of their planet-spawning disks. The Upper Scorpius stellar group lies roughly 470 light years from Earth.

While those stars have been thought to be just five million years old, the team concludes that those stars are actually more than twice as old, at 11 million years of age. The findings are surprising given Upper Scorpius's status as one of the best-studied samples of young stars in the sky.

The findings by graduate student Mark Pecaut and Assistant Professor Eric Mamajek of Rochester, and Assistant Professor Eric Bubar of Marymount University, were accepted for publication in the Astrophysical Journal.

The scientists came to their conclusions after analyzing hundreds of optical spectra measured with the SMARTS 1.5-meter telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile, as well as reanalyzing previously published data on the stars.

"We combined our new estimates for the temperatures of the stars based on our spectra, with data on the brightnesses and distances to estimate accurate luminosities," said Pecaut. "Then we used state-of-the-art stellar evolution models to determine the ages."

While similar methods were used in the past to calculate ages for some of the Upper Scorpius stars, Pecaut says no previous study has determined independent age estimates for members of the group over such a wide range of stellar masses. The new analysis shows that stars over a wide range of masses in Upper Scorpius -- from slightly more massive than our Sun, up to the mass of the bright star Antares (17 times the mass of our Sun) are giving ages consistent with a mean age of 11 million years.

"For one thing, the distances to the stars are now much more accurately known," said Pecaut. "Also, the newer computer models take into account the rotation of the stars and its effect on the mixing on the star's hydrogen -- its nuclear fuel source."

"The first criticism that we heard of the work was that our age estimates for the stars more massive than the Sun in Upper Scorpius disagreed drastically with previously published ages for the smaller stars in the group," said Mamajek. "However, we think the stellar parameters and models are on much firmer footing for the higher mass stars than for the lowest mass stars. The computer models of stars have trouble predicting the correct masses of low-mass stars when they are dynamically measureable, as well as the rate at which the low-mass stars consume their lithium through nuclear reactions. The situation is better for the high mass stars. So there is no reason to think that the ages for the smaller stars would be more accurate."

The results from Rochester have immediate implications for one recent discovery. In 2008, Canadian astronomers reported the discovery of the first imaged exoplanet orbiting a young Sun-like star -- identified as 1RXS J160929.1-210524b. The object and its host star are members of the Upper Scorpius group. If the age of the star is much older than first thought, then the "exoplanet" has been cooling off for a longer period of time and consequently has a greater mass. In this case, the predicted mass of the object goes from roughly 8 Jupiter masses to 14 Jupiter masses. Consequently, the object would not be considered an exoplanet by the discoverer's original definition, but a brown dwarf -- a so-called "failed star." However there is considerable uncertainty about the origins of the low-mass companions discovered circling some stars on wide orbits at hundreds of astronomical units, so the jury is still out on the nature of objects like 1RXS J1609b.

Pecaut says with more accurate estimates of the ages of stars, scientists can better understand how long it takes planets to form. For example, if 11-million-year-old stars do not have gas accreting around them, it means that gas-rich planets like Jupiter and Saturn would have to form in less than 11 million years.

Pecaut expects that the findings of the Rochester team will encourage scientists to reassess the ages of other star clusters. If it's determined that other stellar populations are systematically older than originally believed, then it may mean that the conditions for forming gas giant planets like Jupiter around young stars may typically persist for millions of years longer than previously thought.

"If a stellar group as well-studied as Upper Scorpius can be twice as old as previously believed, then all bets are off on the accuracy of the previously published ages for other similar groups of young stars," added Mamajek.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "Some nearby young stars may be much older than previously thought." ScienceDaily. ScienceDaily, 18 January 2012. <www.sciencedaily.com/releases/2011/12/111221140637.htm>.
University of Rochester. (2012, January 18). Some nearby young stars may be much older than previously thought. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/12/111221140637.htm
University of Rochester. "Some nearby young stars may be much older than previously thought." ScienceDaily. www.sciencedaily.com/releases/2011/12/111221140637.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins