Featured Research

from universities, journals, and other organizations

Novel way to prevent drug-induced liver injury

Date:
January 15, 2012
Source:
Rutgers University
Summary:
Investigators have developed a novel strategy to protect the liver from drug-induced injury and improve associated drug safety. The team reports that inhibiting a type of cell-to-cell communication can protect against damage caused by liver-toxic drugs such as acetaminophen.

Mouse livers exhibit damage after being subjected to the toxins thioacetamide, upper left, and acetaminophen, lower left. When these toxins were administered with the gap junction inhibitor 2-aminoethoxydipenyl-borate, upper and lower right, less damage is visible.
Credit: Patel et. al., MGH, Rutgers, Nature Biotechnology

Rutgers University and Massachusetts General Hospital (MGH) investigators have developed a novel strategy to protect the liver from drug-induced injury and improve associated drug safety.

In a report receiving advance online publication in the journal Nature Biotechnology, the team reports that inhibiting a type of cell-to-cell communication can protect against damage caused by liver-toxic drugs such as acetaminophen.

"Our findings suggest that this therapy could be a clinically viable strategy for treating patients with drug-induced liver injury," said Suraj Patel a postdoctoral researcher in the Center for Engineering in Medicine at MGH and the paper's lead author. "This work also has the potential to change the way drugs are developed and formulated, which could improve drug safety by providing medications with reduced risk of liver toxicity."

Drug-induced liver injury is the most common cause of acute liver failure in the U.S. and is also the most frequent reason for abandoning drugs early in development or withdrawing them from the market. Liver toxicity limits the development of many therapeutic compounds and presents major challenges to both clinical medicine and to the pharmaceutical industry.

Since no pharmaceutical strategies currently exist for preventing drug-induced liver injury, treatment options are limited to discontinuing the offending drug, supportive care and transplantation for end-stage liver failure.

The researchers investigated an approach that targets a liver's gap junctions -- hollow multimolecular channels that connect neighboring cells and allow direct communication between coupled cells. In the heart, gap junctions propagate the electrical activity required for synchronized contraction, but their role in the liver has not been well understood

Recent work has shown that gap junctions spread immune signals from injured liver cells to surrounding undamaged cells, amplifying inflammation and injury. The current study examined inhibiting the action of liver-specific gap junctions to limit drug-induced liver injury.

The researchers first used a strain of genetically mutated mice that lack a particular liver-specific gap junction. The mice were administered various liver-toxic drugs such as acetaminophen, a commonly used medication best known under the Tylenol brand name. Acetaminophen overdoses are the most frequent cause of drug-induced liver injury.

Compared to normal mice, those lacking liver gap junctions were fully protected against liver damage, inflammation and death caused by administration of liver-toxic drugs. The team then identified a small-molecule inhibitor of liver gap junctions that, when given with or even after the toxic drugs, protected the livers of normal mice against injury and prevented their death.

"This finding is very exciting and potentially very powerful from a number of basic science and clinical application standpoints, which we are continuing to explore," said Martin Yarmush, senior author of the report and the Paul and Mary Monroe Professor of Biomedical Engineering at Rutgers. "However, before we can think about applying this approach to patients, we need to know more about any off-target effects of gap junction inhibitors and better understand the long-term ramifications of temporarily blocking liver-specific gap junction channels."

Additionally, cell culture experiments indicated that blocking gap junctions limited the spread through liver cells of damaging free radicals and oxidative stress, suggesting a possible mechanism for the observed protection.

Other co-authors of the study are Jack Milwid, Kevin King, Stefan Bohr, Arvin Iracheta-Vellve, Matthew Li, Antonia Vitalo and Biju Parekkadan of MGH, and Rohit Jindal of Rutgers. The work was supported by grants from the National Institutes of Health and Shriners Hospitals for Children.


Story Source:

The above story is based on materials provided by Rutgers University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Suraj J Patel, Jack M Milwid, Kevin R King, Stefan Bohr, Arvin Iracheta-Velle, Matthew Li, Antonia Vitalo, Biju Parekkadan, Rohit Jindal & Martin L Yarmush. Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nature Biotechnology, 15 January 2012 DOI: 10.1038/nbt.2089

Cite This Page:

Rutgers University. "Novel way to prevent drug-induced liver injury." ScienceDaily. ScienceDaily, 15 January 2012. <www.sciencedaily.com/releases/2012/01/120115140053.htm>.
Rutgers University. (2012, January 15). Novel way to prevent drug-induced liver injury. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2012/01/120115140053.htm
Rutgers University. "Novel way to prevent drug-induced liver injury." ScienceDaily. www.sciencedaily.com/releases/2012/01/120115140053.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
Amid Grave Ebola Estimates, US to Test Vaccine

Amid Grave Ebola Estimates, US to Test Vaccine

AP (Aug. 28, 2014) The National Institutes of Health will start the first human safety trials of an experimental Ebola vaccine next week, amid a grave estimate from the World Health Organization that Ebola cases in West Africa could top 20,000. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins