Featured Research

from universities, journals, and other organizations

Superfluorescence seen from solid-state material: Many bodies make one coherent burst of light

Date:
January 30, 2012
Source:
Rice University
Summary:
In a flash, the world changed for Tim Noe -- and for physicists who study what they call many-body problems. The graduate student was the first to see, in the summer of 2010, proof of a theory that solid-state materials are capable of producing an effect known as superfluorescence.

Pumping laser pulses into a stack of quantum wells created an effect physicists had long sought but not seen until now: superfluorescence in a solid-state material. The Rice University lab of physicist Junichiro Kono reported the results in Nature Physics.
Credit: Tim Noe/Rice University

In a flash, the world changed for Tim Noe -- and for physicists who study what they call many-body problems. The Rice University graduate student was the first to see, in the summer of 2010, proof of a theory that solid-state materials are capable of producing an effect known as superfluorescence.

That can only happen when "many bodies" -- in this case, electron-hole pairs created in a semiconductor -- decide to cooperate.

Noe, a student of Rice physicist Junichiro Kono, and their research team used high-intensity laser pulses, a strong magnetic field and very cold temperatures to create the conditions for superfluorescence in a stack of 15 undoped quantum wells. The wells were made of indium, gallium and arsenic and separated by barriers of gallium-arsenide (GaAs). The researchers' results were reported this week in the journal Nature Physics.

Noe spent weeks at the only facility with the right combination of gear to carry out such an experiment, the National High Magnetic Field Laboratory at Florida State University. There, he placed the device in an ultracold (as low as 5 kelvins) chamber, pumped up the magnetic field (which effectively makes the "many body" particles -- the electron-hole pairs -- more sensitive and controllable) and fired a strong laser pulse at the array.

"When you shine light on a semiconductor with a photon energy larger than the band gap, you can create electrons in the conduction band and holes in the valence band. They become conducting," said Kono, a Rice professor of electrical and computer engineering and in physics and astronomy. "The electrons and holes recombine -- which means they disappear -- and emit light. One electron-hole pair disappears and one photon comes out. This process is called photoluminescence."

The Rice experiment acted just that way, but pumping strong laser light into the layers created a cascade among the quantum wells. "What Tim discovered is that in these extreme conditions, with an intense pulse of light on the order of 100 femtoseconds (quadrillionths of a second), you create many, many electron-hole pairs. Then you wait for hundreds of picoseconds (mere trillionths of a second) and a very strong pulse comes out," Kono said.

In the quantum world, that's a long gap. Noe attributes that "interminable" wait of trillionths of a second to the process going on inside the quantum wells. There, the 8-nanometer-thick layers soaked up energy from the laser as it bored in and created what the researchers called a magneto-plasma, a state consisting of a large number of electron-hole pairs. These initially incoherent pairs suddenly line up with each other.

"We're pumping (light) to where absorption's only occurring in the GaAs layers," Noe said. "Then these electrons and holes fall into the well, and the light hits another GaAs layer and another well, and so on. The stack just increases the amount of light that's absorbed." The electrons and holes undergo many scattering processes that leave them in the wells with no coherence, he said. But as a result of the exchange of photons from spontaneous emission, a large, macroscopic coherence develops.

Like a capacitor in an electrical circuit, the wells become saturated and, as the researchers wrote, "decay abruptly" and release the stored charge as a giant pulse of coherent radiation.

"What's unique about this is the delay time between when we create the population of electron-hole pairs and when the burst happens. Macroscopic coherence builds up spontaneously during this delay," Noe said.

Kono said the basic phenomenon of superfluorescence has been seen for years in molecular and atomic gases but wasn't sought in a solid-state material until recently. The researchers now feel such superfluorescence can be fine-tuned. "Eventually we want to observe the same phenomenon at room temperature, and at much lower magnetic fields, maybe even without a magnetic field," he said.

Even better, Kono said, it may be possible to create superfluorescent pulses with any desired wavelength in solid-state materials, powered by electrical rather than light energy.

The researchers said they expect the paper to draw serious interest from their peers in a variety of disciplines, including condensed matter physics; quantum optics; atomic, molecular and optical physics; semiconductor optoelectronics; quantum information science; and materials science and engineering.

There's much work to be done, Kono said. "There are several puzzles that we don't understand," he said. "One thing is a spectral shift over time: The wavelength of the burst is actually changing as a function of time when it comes out. It's very weird, and that has never been seen."

Noe also observed superfluorescent emission with several distinct peaks in the time domain, another mystery to be investigated.

The paper's co-authors include Rice postdoctoral researcher Ji-Hee Kim; former graduate student Jinho Lee and Professor David Reitze of the University of Florida, Gainesville; researchers Yongrui Wang and Aleksander Wojcik and Professor Alexey Belyanin of Texas A&M University; and Stephen McGill, an assistant scholar and scientist at the National High Magnetic Field Laboratory at Florida State University, Tallahassee.

Support for the research came from the National Science Foundation, with support for work at the National High Magnetic Field Laboratory from the state of Florida.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Timothy Noe II, Ji-Hee Kim, Jinho Lee, Yongrui Wang, Aleksander K. Wójcik, Stephen A. McGill, David H. Reitze, Alexey A. Belyanin, Junichiro Kono. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nature Physics, 2012; DOI: 10.1038/nphys2207

Cite This Page:

Rice University. "Superfluorescence seen from solid-state material: Many bodies make one coherent burst of light." ScienceDaily. ScienceDaily, 30 January 2012. <www.sciencedaily.com/releases/2012/01/120130172613.htm>.
Rice University. (2012, January 30). Superfluorescence seen from solid-state material: Many bodies make one coherent burst of light. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/01/120130172613.htm
Rice University. "Superfluorescence seen from solid-state material: Many bodies make one coherent burst of light." ScienceDaily. www.sciencedaily.com/releases/2012/01/120130172613.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins