Featured Research

from universities, journals, and other organizations

Short-term memory is based on synchronized brain oscillations

Date:
January 31, 2012
Source:
Max-Planck-Gesellschaft
Summary:
Holding information within one's memory for a short while is a seemingly simple and everyday task. We use our short-term memory when remembering a new telephone number if there is nothing to write at hand, or to find the beautiful dress inside the store that we were just admiring in the shopping window. Yet, despite the apparent simplicity of these actions, short-term memory is a complex cognitive act that entails the participation of multiple brain regions. However, whether and how different brain regions cooperate during memory has remained elusive. Researchers in Germany have now come closer to answering this question. They discovered that oscillations between different brain regions are crucial in visually remembering things over a short period of time.

In each of the two brain regions (IPF and V4) brain activity shows strong oscillations in a certain set of frequencies called the theta-band.
Credit: Stefanie Liebe, MPI for Biological Cybernetics

Scientists have now discovered how different brain regions cooperate during short-term memory.

Related Articles


Holding information within one's memory for a short while is a seemingly simple and everyday task. We use our short-term memory when remembering a new telephone number if there is nothing to write at hand, or to find the beautiful dress inside the store that we were just admiring in the shopping window. Yet, despite the apparent simplicity of these actions, short-term memory is a complex cognitive act that entails the participation of multiple brain regions. However, whether and how different brain regions cooperate during memory has remained elusive.

A group of researchers from the Max Planck Institute for Biological Cybernetics in Tόbingen, Germany has now come closer to answering this question. They discovered that oscillations between different brain regions are crucial in visually remembering things over a short period of time.

It has long been known that brain regions in the frontal part of the brain are involved in short-term memory, while processing of visual information occurs primarily at the back of the brain. However, to successfully remember visual information over a short period of time, these distant regions need to coordinate and integrate information.

To better understand how this occurs, scientists from the Max Planck Institute of Biological Cybernetics in the department of Nikos Logothetis recorded electrical activity both in a visual area and in the frontal part of the brain in monkeys. The scientists showed the animals identical or different images within short intervals while recording their brain activity. The animals then had to indicate whether the second image was the same as the first one.

The scientists observed that, in each of the two brain regions, brain activity showed strong oscillations in a certain set of frequencies called the theta-band. Importantly, these oscillations did not occur independently of each other, but synchronized their activity temporarily: "It is as if you have two revolving doors in each of the two areas. During working memory, they get in sync, thereby allowing information to pass through them much more efficiently than if they were out of sync," explains Stefanie Liebe, the first author of the study, conducted in the team of Gregor Rainer in cooperation with Gregor Hφrzer from the Technical University Graz. The more synchronized the activity was, the better could the animals remember the initial image. Thus, the authors were able to establish a direct relationship between what they observed in the brain and the performance of the animal.

The study highlights how synchronized brain oscillations are important for the communication and interaction of different brain regions. Almost all multi-faceted cognitive acts, such as visual recognition, arise from a complex interplay of specialized and distributed neural networks. How relationships between such distributed sites are established and how they contribute to represent and communicate information about external and internal events in order to attain a coherent percept or memory is still poorly understood.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefanie Liebe, Gregor M Hoerzer, Nikos K Logothetis, Gregor Rainer. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 2012; DOI: 10.1038/nn.3038

Cite This Page:

Max-Planck-Gesellschaft. "Short-term memory is based on synchronized brain oscillations." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131121421.htm>.
Max-Planck-Gesellschaft. (2012, January 31). Short-term memory is based on synchronized brain oscillations. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2012/01/120131121421.htm
Max-Planck-Gesellschaft. "Short-term memory is based on synchronized brain oscillations." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131121421.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com
One Dose, Then Surgery to Test Tumor Drugs Fast

One Dose, Then Surgery to Test Tumor Drugs Fast

AP (Jan. 23, 2015) — A Phoenix hospital is experimenting with a faster way to test much needed medications for deadly brain tumors. Patients get a single dose of a potential drug, and hours later have their tumor removed to see if the drug had any affect. (Jan. 23) Video provided by AP
Powered by NewsLook.com
The Best Bedtime Rituals For a Good Night's Sleep

The Best Bedtime Rituals For a Good Night's Sleep

Buzz60 (Jan. 22, 2015) — What you do before bed can effect how well you sleep. TC Newman (@PurpleTCNewman) has bedtime rituals to induce the best night&apos;s sleep. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins