Featured Research

from universities, journals, and other organizations

Nanorod-assembled order affects diffusion rate and direction

Date:
February 6, 2012
Source:
Georgia Institute of Technology
Summary:
Scientists studied the movements of a spherical probe amongst static nanorods. They found that the particles sometimes diffused faster in a nematic environment than in a disordered environment. That is, the channels left open between the ordered nanorods don't just steer nanoparticles along a direction, they also enable them to speed right through.

Diffusional behavior of a spherical probe through static nematogens (or needles) is probed via molecular dynamics simulations.
Credit: Image courtesy of Georgia Institute of Technology

ome of the recent advancements in nanotechnology depend critically on how nanoparticles move and diffuse on a surface or in a fluid under non-ideal to extreme conditions. Georgia Tech has a team of researchers dedicated to advancing this frontier.

Rigoberto Hernandez, a professor in the School of Chemistry and Biochemistry, investigates these relationships by studying three-dimensional particle dynamics simulations on high-performance computers. His new findings, which focus on the movements of a spherical probe amongst static needles, have landed on the cover of February's The Journal of Physical Chemistry B.

Hernandez and his former Ph.D. student, Ashley Tucker, assembled the rodlike scatterers in one of two states during his simulations: disordered (isotropic) and ordered (nematic). When the nanorods were disordered, pointing in various directions, Hernandez found that a particle typically diffused uniformly in all directions. When every rod pointed in the same direction, the particle, on average, diffused more in the same direction as the rods than against the grain of the rods. In this nematic state, the probe's movement mimicked the elongated shape of the scatterers. The surprise was that the particles sometimes diffused faster in the nematic environment than in the disordered environment. That is, the channels left open between the ordered nanorods don't just steer nanoparticles along a direction, they also enable them to speed right through.

As the density of the scatterers is increased, the channels become more and more crowded. The particle diffusing through these increasingly crowded assemblies slows down dramatically in the simulation. Nevertheless, the researchers found that the nematic scatterers continued to accommodate faster diffusion than disordered scatterers.

"These simulations bring us a step closer to creating a nanorod device that allows scientists to control the flow of nanoparticles," said Hernandez. "Blue-sky applications of such devices include the creation of new light patterns, information flow and other microscopic triggers."

For example, if scientists need a probe to diffuse in a specific direction at a particular speed, they could trigger the nanorods to move into a specified direction. When they need to change the particle's direction, scatterers could then be triggered to rearrange into a different direction. Indeed, the trigger could be the absence of sufficient nanoparticles in a given part of the device. The ensuing reordering of the nanorods would then drive a repopulation of nanoparticles that would then be available to perform a desired action, such as to stimulate light flow.

"While this NSF-funded work to better understand the motion of particles within complex arrays at the nanoscale is very fundamental," Hernandez says, "it has significant long-term implications on device fabrication and performance at such scales. It's fun to think about and provides great training for my students."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ashley K. Tucker, Rigoberto Hernandez. Diffusion of a Spherical Probe through Static Nematogens: Effect of Increasing Geometric Anisotropy and Long-Range Structure. The Journal of Physical Chemistry B, 2011; 111227084131005 DOI: 10.1021/jp207346j

Cite This Page:

Georgia Institute of Technology. "Nanorod-assembled order affects diffusion rate and direction." ScienceDaily. ScienceDaily, 6 February 2012. <www.sciencedaily.com/releases/2012/02/120206122628.htm>.
Georgia Institute of Technology. (2012, February 6). Nanorod-assembled order affects diffusion rate and direction. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/02/120206122628.htm
Georgia Institute of Technology. "Nanorod-assembled order affects diffusion rate and direction." ScienceDaily. www.sciencedaily.com/releases/2012/02/120206122628.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins